论文题目:A Multi-Modal Contrastive Diffusion Model for Therapeutic Peptide Generation
用于治疗性肽生成的多模态对比扩散模型
摘要
治疗性肽是一类独特的药物,对人类疾病的治疗至关重要。近年来,深度生成模型在治疗性肽生成方面展现出显著潜力,但这些模型仅利用序列或结构信息中的一种,限制了生成性能。在本研究中,我们提出了一种多模态对比扩散模型 (MMCD),将序列和结构模态融合在一个扩散框架中,共同生成新的肽序列和结构。具体来说,MMCD 分别构建了序列模态和结构模态的扩散模型,并在每个扩散时间步中设计了一种包含模态间对比和模态内对比的多模态对比学习策略,旨在捕捉两种模态之间的一致性,并提升模型性能。模态间对比通过最大化序列和结构嵌入的相似性来对齐肽的序列和结构,而模态内对比则通过同时最大化序列/结构嵌入的差异性来区分治疗性和非治疗性肽。广泛的实验表明,MMCD 在生成治疗性肽时,表现优于其他最新的深度生成方法,涉及的评估指标包括抗菌/抗癌评分、多样性以及肽对接等。