如图
11-2
所示,金属薄条带宽度
L
= 3
λ
,其上划分
300
个网格。

% 参数设置
L = 3; % 条带宽度(以波长λ为单位)
lambda = 1; % 波长,设为1(归一化)
L_meters = L * lambda; % 实际宽度
N = 300; % 网格数
delta_x = L_meters / N; % 每个网格的长度
x = linspace(0, L_meters, N); % 条带中心为原点
% 入射波参数
phi_i_deg = 90; % 入射角度(度)
phi_i = deg2rad(phi_i_deg); % 转换为弧度
k = 2 * pi / lambda; % 波数
mu = 4 * pi * 1e-7; % 自由空间磁导率(H/m)
epsilon = 8.854e-12; % 自由空间介电常数(F/m)
c = 1 / sqrt(mu * epsilon); % 光速
f = c / lambda; % 频率(Hz)
omega = 2 * pi * f; % 角频率(rad/s) % 角频率 [rad/s]
% 构造阻抗矩阵Z
Z = zeros(N, N);
for m = 1:N
xm = x(m); % 测试点位置
for n = 1:N
xn = x(n); % 源点位置
if m == n
% 对角线元素(奇异点处理)
% Z(m, n) = (delta_x / 4) * (1 - 1i * (2/pi) * (log(k * delta_x / 4) - 0.5772));
Z(m, n) = (delta_x / 4) * (1 - 1i * (2/pi) * (log(k * 0.5772*delta_x / (4*exp(1))) ));
else
% 非对角线元素
R = abs(xm - xn);
Z(m, n) = ( delta_x / 4) * besselh(0, 2, k * R);
end
end
end
% 构造激励向量V
V = zeros(N, 1);
for m = 1:N
xm = x(m);
V(m) =(1/(omega*mu)) * exp(1i * k * xm * cos(phi_i));
end
% 求解电流密度I
I = Z \ V;
% 绘制表面电流密度
figure;
plot(x/lambda, abs(I)*1e3, 'b-', 'LineWidth', 1.5); % 转换为mA/m
xlabel('位置 (x/\lambda)');
ylabel('电流密度 (mA/m)');
title('TM极化入射波下的表面电流密度');
grid on;
% 计算单站RCS(0°到180°)
phi_deg_range = 0:1:180;
phi_range = deg2rad(phi_deg_range);
RCS = zeros(size(phi_range));
for idx = 1:length(phi_range)
phi = phi_range(idx);
% 计算散射场
E_scat = 0;
for n = 1:N
xn = x(n);
E_scat = E_scat - omega*mu*sqrt(1i/(8*pi*k)) * (exp(-1j * k * lambda) / sqrt(lambda))*I(n) * exp(-1i * k * xn * cos(phi)) * delta_x;
% rho = lambda; % 假设远场距离(例如 等于波长) ρ=波长
% phase_rho = exp(-1j * k * rho) / sqrt(rho); % 远场衰减和相位项
% E_scat = E_scat * phase_rho; % 加入远场衰减
end
RCS(idx) = 2*pi*(abs(E_scat))^2; % RCS与散射场幅度的平方成正比
end
% 绘制单站RCS
figure;
plot(phi_deg_range, 10*log10(RCS), 'r-', 'LineWidth', 1.5); % 转换为dB
xlabel('入射角度 (度)');
ylabel('RCS (dB)');
title('TM极化入射波下的单站RCS');
grid on;
结果: