数学表达式基础——2 集合、向量与矩阵

1 集合

1.1 集合的表示方法

类型符号表示举例文字说明
枚举法1) A = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } \mathbf{A} = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} A={0,1,2,3,4,5,6,7,8,9}是阿拉伯数字的集合
2 ) N = { 0 , 1 , 2 , … , } 2) \mathbf{N} = \{0, 1, 2, \dots,\} 2)N={0,1,2,,}是自然数的集合
3 ) Ω = { a , b , … , z } 3) \mathbf{\Omega} = \{\textrm{a}, \textrm{b}, \dots, \textrm{z}\} 3)Ω={a,b,,z}是英文字母表
1) \mathbf{A} = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
2) \mathbf{N} = {0, 1, 2, \dots,}
3) mathbf{\Omega} = {\textrm{a}, \textrm{b}, \dots, \textrm{z}}
易错的三个坑:
1) 逗号前无空格,逗号后有空格;
2) 集合要用加粗;
3) 集合用{ },且元素无序
枚举的简记法1) 两个整数间的枚举集合:
[ 1..10 ] = { 1 , 2 , … , 10 } [1 ..10] = \{1, 2, \dots, 10\} [1..10]={1,2,,10}
2) 区间:(3, 5)[3,5) …
3) X = { x i } i = 1 n = { x 1 , … , x n } \mathbf{X} = \{ x_i\}_{i=1}^n = \{ x_1, \dots, x_n\} X={xi}i=1n={x1,,xn}
1) [1. .10] = {1, 2, \dots, 10}
2)(3, 5)[3,5)
3) \mathbf{X} = { x_i}_{i=1}^n = {x_1, \dots, x_n}
谓词法奇数的集合:
O = { x ∣ x ∈ N , x m o d    2 = 1 } \mathbf{O} = \{ x \vert x \in \mathbf{N}, x \mod 2 = 1\} O={xxN,xmod2=1}
O = { x ∈ N ∣ x m o d    2 = 1 } \mathbf{O} = \{ x \in \mathbf{N} \vert x \mod 2 = 1\} O={xNxmod2=1}
1) mathbf{O} = { x \vert x \in \mathbf{N}, x \mod 2 = 1}
2) \mathbf{O} = { x \in \mathbf{N} \vert x \mod 2 = 1}
第2种写法,通常把基本的限制写在左边,但是只能写一个条件

1. 2 常用的集合

类型符号文字说明
实数 R ( 常 用 , 推 荐 ) \mathbb{R}(常用,推荐) R(
R \mathcal{R} R(可以接受)
\mathbb{R}
\mathcal{R}
R \mathbb{R} R是实数专用,不能另做他用
空集 ∅ \emptyset \emptyset ϕ \phi ϕ(\phi)是错误的表达
全集 U \mathbf{U} U\mathbf{U}

1.3 元素与子集

类型符号文字说明
元素 x ∈ X x \in \mathbf{X} xXx \in \mathbf{X}元素 x x x与集合 X \mathbf{X} X的关系
子集 A ⊂ B \mathbf{A} \subset \mathbf{B} AB\mathbf{A} \subset \mathbf{B}集合A与集合B的关系
子集 A ⊆ B \mathbf{A} \subseteq \mathbf{B} AB\mathbf{A} \subseteq \mathbf{B}集合A与集合B的关系

1.4 集合运算

运算类型符号文字说明
∣ X ∣ \vert \mathbf{X} \vert X\vert \mathbf{X} \vert集合 X \mathbf{X} X中元素的个数
∣ ∅ ∣ = 0 \vert \emptyset \vert = 0 =0
1) X ∪ Y \mathbf{X} \cup \mathbf{Y} XY
2) ⋃ i = 1 n X i \bigcup_{i=1}^n \mathbf{X}_i i=1nXi
1) \mathbf{X} \cup \mathbf{Y}
2) \bigcup_{i=1}^n \mathbf{X}_i
1) 两个集合并
2) n个集合并
1) X ∩ Y \mathbf{X} \cap \mathbf{Y} XY
2) ⋂ i = 1 n X i \bigcap_{i=1}^n \mathbf{X}_i i=1nXi
1) \mathbf{X} \cap \mathbf{Y}
2) \bigcap_{i=1}^n \mathbf{X}_i
1) 两个集合并交
2) n个集合交
X ∖ Y \mathbf{X} \setminus \mathbf{Y} XY\mathbf{X} \setminus \mathbf{Y}两个集合差
X ‾ = U ∖ X \overline{\mathbf{X}} = \mathbf{U} \setminus \mathbf{X} X=UX\overline{\mathbf{X}} = \mathbf{U} \setminus \mathbf{X}全集 U \mathbf{U} U
有人用 ¬ X \neg \mathbf{X} ¬X 可以接受,但不建议
幂集 2 A = { B ∣ B ⊆ A } 2^\mathbf{A} = \{ \mathbf{B} \vert \mathbf{B} \subseteq \mathbf{A}\} 2A={BBA}2^\mathbf{A} = { \mathbf{B} \vert \mathbf{B} \subseteq \mathbf{A}}例如: A = { 0 , 1 , 2 } \mathbf{A} = \{0, 1, 2\} A={0,1,2},则:
1) 2 A = { ∅ , { 0 } , { 1 } , { 2 } , { 0 , 1 } , { 0 , 2 } , { 1 , 2 } , { 0 , 1 , 2 } } 2^\mathbf{A} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\} 2A={,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}}
2) ∣ 2 A ∣ = 2 ∣ A ∣ = 2 3 = 8 \vert 2^\mathbf{A} \vert = 2 ^{\vert \mathbf{A}}\vert = 2^3 = 8 2A=2A=23=8
3) B ⊆ A \mathbf{B} \subseteq \mathbf{A} BA B ∈ 2 A \mathbf{B} \in 2^\mathbf{A} B2A等价
笛卡尔积 A × B = { ( a , b ) ∣ a ∈ A , b ∈ B } \mathbf{A} \times \mathbf{B} = \{(a, b) \vert a \in \mathbf{A}, b \in \mathbf{B}\} A×B={(a,b)aA,bB}\mathbf{A} \times \mathbf{B} = {(a, b) \vert a \in \mathbf{A}, b \in \mathbf{B}} A \mathbf{A} A B \mathbf{B} B各出一个元素,组成一个新的元素对
( a , b ) ≠ ( b , a ) (a, b) \neq (b, a) (a,b)=(b,a),所以 A × B ≠ B × A \mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A} A×B=B×A
对于有穷集合: ∣ A × B ∣ = ∣ A ∣ × ∣ B ∣ \vert \mathbf{A} \times \mathbf{B} \vert = \vert \mathbf{A}\vert \times \vert \mathbf{B} \vert A×B=A×B

2 簇

集合的集合称为簇,一般用\mathcal符号表示

运算类型符号文字说明
B = { B 1 , … , B N } \mathcal{B} = \{ \mathbf{B}_1, \dots, \mathbf{B}_N\} B={B1,,BN}, where B i = { x i 1 , … , x i j } \mathbf{B}_i=\{ \mathbf{x}_{i1}, \dots, \mathbf{x}_{ij}\} Bi={xi1,,xij}\mathcal{B} = { \mathbf{B}_1, \dots, \mathbf{B}N},
\mathbf{B}i={ \mathbf{x}{i1}, \dots, \mathbf{x}
{ij}}
x i j \mathbf{x}_{ij} xij B i \mathbf{B}_i Bi中的一个向量, B i \mathbf{B}_i Bi是向量的集合,而 B \mathcal{B} B B i \mathbf{B}_i Bi的集合
簇的并运算 ∪ B = ∪ { B 1 , … , B N } = ⋃ i = 1 N { B i } = B 1 ∪ B 2 ∪ ⋯ ∪ B N \cup \mathcal{B} =\cup \{ \mathbf{B}_1, \dots, \mathbf{B}_N\} =\bigcup_{i=1}^N\{B_i\} = \mathbf{B}_1\cup \mathbf{B}_2\cup\dots\cup \mathbf{B}_N B={B1,,BN}=i=1N{Bi}=B1B2BN\cup \mathcal{B} =\cup { \mathbf{B}_1, \dots, \mathbf{B}N} =\bigcup{i=1}^N{B_i} = \mathbf{B}_1\cup \mathbf{B}_2\cup\dots\cup \mathbf{B}_N即进行“解簇”运算,让所有集合并成了一个集合。

例1:
在这里插入图片描述

上式描述, x i j \mathbf{x}_{ij} xij属于标签为正的包 B i \mathbf{B}_i Bi, 但是谓词法(\vert)标准用法是用于集合。
但如果这里加上括号,即: x i j ∈ { B i ∣ y i = + 1 } \mathbf{x}_{ij} \in \{\mathbf{B}_i \vert y_i=+1\} xij{Biyi=+1},那么一个向量 x i j \mathbf{x}_{ij} xij属于一个簇,则是不对的。
解决:
x i j ∈ ∪ { B i ∣ y i = + 1 } \mathbf{x}_{ij} \in \cup\{\mathbf{B}_i \vert y_i=+1\} xij{Biyi=+1},这样就可以啦。

例2:
在这里插入图片描述

上式想表示 X 1 ∗ \mathbf{X}_1^* X1是一个 B i \mathbf{B}_i Bi的一个并集,并且 B i \mathbf{B}_i Bi是标签为-1的包,且属于 B \mathcal{B} B
但是,\vert这种表示,都是集合的谓词描述方法,那么,上式可以改写为:
X 1 ∗ = ⋃ { B i ∈ B ∣ y i = − 1 } \mathbf{X}_1^*=\bigcup \{\mathbf{B}_i \in \mathcal{B}\vert y_i=-1\} X1={BiByi=1}

3 向量

表示向量用( )或 [ ] ;
向量通常用小写加粗符号,如: \mathbf{x} \bm{x} \boldsymbol{x}

类型符号表示文字说明
列向量1) x ∈ R m \mathbf{x} \in \mathbb{R}^m xRm
2) x = ( x 1 ; x 2 ; …   ; x n ) \mathbf{x} = (x_1; x_2; \dots; x_n) x=(x1;x2;;xn), x i ∈ R x_i \in \mathbb{R} xiR
1) \mathbf{x} \in \mathbb{R}^m
2) \mathbf{x} = ( x_1; x_2; \dots; x_n)
m*1维空间的一个点
行向量1) x ∈ R 1 ∗ m \mathbf{x} \in \mathbb{R}^{1*m} xR1m
2) x = ( x 1 , x 2 , … , x n ) \mathbf{x} = ( x_1, x_2, \dots, x_n) x=(x1,x2,,xn), x i ∈ R x_i \in \mathbb{R} xiR
1) \mathbf{x} \in \mathbb{R}^{1*m}
2) \mathbf{x} = ( x_1, x_2, \dots, x_n)
1*m维空间的一个点
转置 x = ( x 1 , x 2 , … , x n ) \mathbf{x} = ( x_1, x_2, \dots, x_n) x=(x1,x2,,xn),则
x T = ( x 1 ; x 2 ; …   ; x n ) \mathbf{x}^{\mathrm{T}} = ( x_1; x_2; \dots; x_n) xT=(x1;x2;;xn)
\mathbf{x}^{\mathrm{T}} = ( x_1; x_2; \dots; x_n)
内积(点积) a ⋅ b = a b T = ∑ i = 1 n a i b i \mathbf{a} \cdot \mathbf{b} = \mathbf{a}\mathbf{b}^\mathrm{T} = \sum_{i=1}^n a_ib_i ab=abT=i=1naibi\mathbf{a} \cdot \mathbf{b} = \mathbf{a}\mathbf{b}^\mathrm{T} = \sum_{i=1}^n a_ib_i机器学习里面,常用于求向量的加权和:
x ⋅ w = x w T = ∑ i = 1 n x i w i \mathbf{x} \cdot \mathbf{w} = \mathbf{x}\mathbf{w}^\mathrm{T} = \sum_{i=1}^n x_iw_i xw=xwT=i=1nxiwi

4 矩阵

类型符号表示文字说明
m行n列的矩阵1) X ∈ R m × n \mathbf{X} \in \mathbb{R}^{m \times n} XRm×n
2) X = [ x i j ] m × n \mathbf{X} = [x_{ij}]_{m \times n} X=[xij]m×n, x i j ∈ R x_{ij} \in \mathbb{R} xijR
1) \mathbf{X} \in \mathbb{R}^{m \times n}
2) \mathbf{X} = [x_{ij}]_{m \times n}
m × n m \times n m×n 维空间的一个点
机器学习的特殊表示 X = { x i } i = 1 m = { x 1 , x 2 , … , x m } . \mathbf{X} = \{ \mathbf{x}_i\}_{i=1}^m = \{ \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}. X={xi}i=1m={x1,x2,,xm}.
其中, x i = ( x i 1 , x i 2 , … , x i n ) \mathbf{x}_i = ( x_{i1}, x_{i2}, \dots, x_{in}) xi=(xi1,xi2,,xin)
描述的是, X \mathbf{X} X包括m个实例,每个示例用n个属性表示。 X \mathbf{X} X是集合,后者是向量。
好处:方便表示实例和特征值的关系
缺点: X \mathbf{X} X不能参与矩阵运算
若实在需要,只能适当牺牲严谨性,做一些说明,如:
in the following context, $\mathbf{X} is alos treated as [ x 1 , x 2 , … , x n ] T [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]^\mathrm{T} [x1,x2,,xn]T to surpport matrix operations.
  • 14
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值