斯特林公式&1018 Big Number

斯特林公式是一条用来取n的阶乘的近似值的数学公式。一般来说,当n很大的时候,n阶乘的计算量十分大,所以斯特林公式十分好用,而且,即使在n很小的时候(除1以外),斯特林公式的取值已经十分准确。
求n!的位数
利用斯特林(Stirling)公式的进行求解。下面是推导得到的公式:
  res=(long)( (log10(sqrt(4.0*acos(0.0)n)) + n(log10(n)-log10(exp(1.0)))) + 1 );

Big Number

Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.

Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.

Output
The output contains the number of digits in the factorial of the integers appearing in the input.

Sample Input
2
10
20

Sample Output
7
19

#include<bits/stdc++.h>
using namespace std;
using LL=int64_t;
int main()
{
    LL T;
    cin>>T;
    for(int i=0;i<T;i++) {
        int n;
        cin>>n;
        if(n==1) cout<<1<<endl;
        else {
            double res=(long)( (log10(sqrt(4.0*acos(0.0)*n)) + n*(log10(n)-log10(exp(1.0)))) + 1 );
            cout<<(int)res<<endl;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值