评价类_基于熵权法对Topsis模型的修正 (清风数学建模)

基于熵权法对Topsis 模型的修正

熵权法的计算步骤

第一步 非负性

第二步 归一化

计算

方便理解的matlab 代码

disp(Z)

disp(max(Z)) ===》 每列的最大值 0.3216 0.3342 0.4009 0.3065

disp( max( max(Z) ) ) ===》 整个矩阵的最大值 0.4009

disp(repmat(max(Z),n,1)) ===> n的位置是 往下复制

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065

​0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065

0.3216 0.3342 0.4009 0.3065

0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065

​0.3216 0.3342 0.4009 0.3065 ​

0.3216 0.3342 0.4009 0.3065

0.3216 0.3342 0.4009 0.3065

​0.3216 0.3342 0.4009 0.3065

disp(repmat(max(Z),n,2) ===> n的位置是 往下复制 且往右多复制一份

sum(S) 这是求和

[sorted_S,index] = sort(stand_S ,'descend') 降序 并降序后的数据(sorted_S) 和 原来的排序(index)

stand_S =

0.0451
0.0478
0.0485
0.0488
0.0431
0.0448
0.0539
0.0510
0.0681
0.0684
0.0702
0.0591
0.0527
0.0192
0.0533
0.0434
0.0466
0.0438
0.0358
0.0565

sorted_S =

0.0702
0.0684
0.0681
0.0591
0.0565
0.0539
0.0533
0.0527
0.0510
0.0488
0.0485
0.0478
0.0466
0.0451
0.0448
0.0438
0.0434
0.0431
0.0358
0.0192

index =

11
10
 9
12
20
 7
15
13
 8
 4
 3
 2
17
 1
 6
18
16
 5
19
14

ppt 的截屏是清风老师的 问过他的应许了  

可以去b站搜清风数学建模 了解了解  后面部分要看完整视频是要钱的(个人觉得性价比是非常可以的) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值