基于熵权法对Topsis 模型的修正
熵权法的计算步骤
第一步 非负性
第二步 归一化
计算
方便理解的matlab 代码
disp(Z)
disp(max(Z)) ===》 每列的最大值 0.3216 0.3342 0.4009 0.3065
disp( max( max(Z) ) ) ===》 整个矩阵的最大值 0.4009
disp(repmat(max(Z),n,1)) ===> n的位置是 往下复制
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
0.3216 0.3342 0.4009 0.3065
disp(repmat(max(Z),n,2) ===> n的位置是 往下复制 且往右多复制一份
sum(S) 这是求和
[sorted_S,index] = sort(stand_S ,'descend') 降序 并降序后的数据(sorted_S) 和 原来的排序(index)
stand_S =
0.0451 0.0478 0.0485 0.0488 0.0431 0.0448 0.0539 0.0510 0.0681 0.0684 0.0702 0.0591 0.0527 0.0192 0.0533 0.0434 0.0466 0.0438 0.0358 0.0565
sorted_S =
0.0702 0.0684 0.0681 0.0591 0.0565 0.0539 0.0533 0.0527 0.0510 0.0488 0.0485 0.0478 0.0466 0.0451 0.0448 0.0438 0.0434 0.0431 0.0358 0.0192
index =
11 10 9 12 20 7 15 13 8 4 3 2 17 1 6 18 16 5 19 14
ppt 的截屏是清风老师的 问过他的应许了
可以去b站搜清风数学建模 了解了解 后面部分要看完整视频是要钱的(个人觉得性价比是非常可以的)