最新扣子(Coze)案例教程:全自动DeepSeek 写影评+批量生成 + 发布飞书,提效10 倍!手把手教学,完全免费教程

👨‍💻群里有同学是做影视赛道的博主,听说最近DeepSeek这么火,咨询能不能用DeepSeek写影评,并整理电影数据资料,自动发布到飞书文档,把每天的工作做成一个自动化的流程。

那今天斜杠君就为大家带来这篇详细的教学,以影评工作流为例,为大家抛砖引玉,教大家如何把自己的工作打造成一个自动化流程,让Ai代替你工作。

智能体作用:批量输入电影名称,自动获取演员、评分、星级和封面等信息,并联网查找电影相关资料,撰写影评,批量写入飞书文档。

首先我们来看一下生成后的效果:

🎥 本期视频教程已上传至知识星球,有更详细的教学文档(包括完整的代码和提示词),加入方法见文章结尾,‍🧑‍🚀还有星球VIP群和大家一起讨论噢~

🤹 接下来,话不多说,斜杠君用最简单的方式教给大家。💖大家可以关注收藏,以免之后找不到,而且也不会错过我后面的教程。

一、创建工作流

首先,新建一个工作流,填写标题和描述。

图片

二、业务逻辑

1、开始节点

开始节点设置两个参数,用来接收要写入的飞书多维表格地址和电影名字。

图片

2、代码节点

代码节点用来把「开始节点」传过来的多个电影名字拆分成一个数组,多个电影名字用换行分隔,在接下来的批处理节点中进行使用。

图片

代码如下:

async function main({ params }: Args): Promise<Output> {    const ret = {        "name": params.name.split("\n")     };    return ret;}

3、批处理节点

📢 敲黑板:这个批处理的环节很重要,同学们要认真学习。

批处理节点,用来为批量撰写影评。

图片

4、插件节点

加入一个插件节点,用来搜索电影信息。

图片

搜索电影信息。使用插件如下:

图片

5、大模型节点

加入一个大模型节点,并为大模型添加一个联网的搜索的技能,这里我选用的是联网问答插件。

图片

接着使用联网搜索到的信息撰写影评。

注意:模型这里使用DeepSeek大模型。

图片

用DeepSeek大把前面的数据进行组装,成飞书文档需要的数据格式。

图片

6、代码节点

使用代码节点把插件返回的信息和撰写的影评进行汇总,组装成飞书多维表格需要的数据格式。

图片

7、插件节点

添加飞书多维表格插件,批量写入飞书表格。

图片

图片

8、结束节点

结束节点把生产的飞书多维表格地址进行输出。

图片

整体的工作流到这里就搭建完成了,大家快动手搭建一下试试吧~ 

🎥 本期视频教程已上传至知识星球,有更详细的教学文档(包括完整的代码和提示词),欢迎大家加入和斜杠君学习,‍🧑‍🚀还有星球VIP群和大家一起讨论噢~

原文链接_联加入免费扣子学习群:最新扣子(Coze)案例教程:全自动DeepSeek 写影评+批量生成 + 发布飞书,提效10 倍!手把手教学,完全免费教程

### Coze 平台的相关案例与示例 #### 关于 Coze 的定义及其功能 Coze 是一种支持用户快速构建 AI 应用程序的开发平台,它允许开发者通过简单的配置和拖拽操作来实现复杂的业务逻辑。这种低代码甚至零代码的方式极大地降低了技术门槛,使得更多的人能够参与到人工智能的应用开发中[^2]。 #### 创建 AI Agent 的具体实例 在 Coze 平台上创建一个属于自己的 AI Agent 可以按照以下方式展开。例如,在一篇详细的教程到过如何利用插件建立一个编程机器人。该机器人的主要作用是接收用户的输入请求,调用外部 API 接口获取数据,并将这些数据经过处理后反馈给用户[^3]。 以下是基于上述描述的一个简单 Python 实现例子: ```python import requests def fetch_and_translate(query): # 调用头条接口查询信息 response = requests.get(f"https://api.example.com/search?query={query}") data = response.json() titles = [] for item in data['items']: title = item['title'] translated_title = translate_to_english(title) # 假设有一个函数可以完成翻译 titles.append(translated_title) return titles def translate_to_english(text): # 使用某个翻译服务将中文标题转为英文 translation_response = requests.post( "https://translate.api.example.com", json={"text": text, "source_lang": "zh", "target_lang": "en"} ) return translation_response.json()['translated_text'] if __name__ == "__main__": user_input = input("请输入您想查询的内容:") results = fetch_and_translate(user_input) print("查询结果如下:") for result in results: print(result) ``` 此脚本模拟了一个基本的工作流程,展示了如何从第三方 API 获取数据并对其进行进一步加工的过程。 #### 图像流的概念补充 另外值得一的是,“图像流”这一概念可能也适用于某些特定场景下的 Coze 应用设计之中。虽然具体的上下文中并未及太多细节,但从广义角度来看,它可以被理解为一系列连续变化的画面或者视频帧序列,这或许能成为未来扩展 Coze 功能的方向之一[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值