塔尔斯基的实数公理系统为无穷小微积分奠基

519 篇文章 7 订阅
        近日,老翁在博文中提及群(Group)的公理化系统(4条),联想起塔尔斯基的实数公理化系统(8条)。有感。

今日,老翁亲自动手试了一试,果然灵验。现在,把塔尔斯基公理系统附在下面,供大家阅读思考。


袁萌  2月21日


附:Tarski's axiomatizationofthe reals
 In 1936, AlfredTarski set out anaxiomatization of the real numbers and their arithmetic,consisting of only the8 axioms shown below and a mere four primitive notions: theset of reals denotedR, a binary total order over R, denoted by infix <, abinary operation ofaddition over R, denoted by infix +, and the constant 1.
 
 The literatureoccasionallymentions this axiomatization but never goes into detail,notwithstanding itseconomy and elegant metamathematical properties. Thisaxiomatization appearslittle known, possibly because of its second-ordernature. 
Tarski's axiomatizationcan be seen as a version of the more usualdefinition of real numbers as theunique Dedekind-complete ordered field; it ishowever made much more concise byusing unorthodox variants of standardalgebraic axioms and other subtle tricks(see e.g. axioms 4 and 5, which combinetogether the usual four axioms ofabelian groups).
 
 The term"Tarski'saxiomatization of real numbers" also refers to the theoryof real closedfields, which Tarski showed completely axiomatizes thefirst-order theory of thestructure 〈R, +, ·, <〉.
The axioms
 
 Axioms of order (primitives: R,<):
 
 Axiom 1
     If x < y, then not y<x. That is, "<" is an asymmetric (非对称)relation.
 
 Axiom 2
     If x < z, there exists aysuch that x < y and y < z. In other words, "<" is denseinR.
 
 Axiom 3
     "<"isDedekind-complete. More formally, for all X, Y ? R, if for all x ∈ X and y ∈ Y, x < y,thenthere exists a z  such that for all x ∈ X and y ∈ Y, if z ≠ x and z ≠ y, then x <zand z < y.
 
 To clarify the above statementsomewhat, let X ? R and Y ? R. We now define two common English verbs inaparticular way that suits our purpose:
 
 X precedes Y if and only ifforevery x ∈ X and every y ∈ Y, x < y.
 
 The real number z separates XandY if and only if for every x ∈ X with x ≠ z and every y ∈ Y with y ≠ z, x < z andz< y.
 
 Axiom 3 can then be stated as:
 
 "If a set of realsprecedesanother set of reals, then there exists at least one real numberseparating thetwo sets."
 
 Axioms of addition (primitives:R, <, +):
 
 Axiom 4
 x + (y + z) = (x + z) + y.
 
 Axiom 5
     For all x, y, there existsaz such that x + z = y.
 
 Axiom 6
     If x + y < z + w, thenx< z or y < w.
 
 Axioms for one (primitives: R,<, +, 1):
 
 Axiom 7
     1 ∈ R.
 
 Axiom 8
     1 < 1 + 1.
 
 These axioms imply that R is alinearly ordered abelian group underaddition with distinguished element 1. R isalso Dedekind-complete anddivisible.
 
 Tarski stated, without proof,that these axioms gave a total ordering.The missing component was supplied in2008 by Stefanie Ucsnay.
 
 This axiomatization does notgive rise to a first-order theory, becausethe formal statement of axiom 3includes two universal quantifiers over allpossible subsets of R. Tarski provedthese 8 axioms and 4 primitive notionsindependent.
How these axioms imply a field
 
 Tarski sketched the (nontrivial)proof of how these axioms andprimitives imply the existence of a binaryoperation called multiplication andhaving the expected properties, so that R isa complete ordered field underaddition and multiplication. This proof buildscrucially on the integers withaddition being an abelian group and has itsorigins in Eudoxus' definition ofmagnituty.(全文完)
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值