袁萌专栏

无穷小微积分倡导者--北大教授

塔尔斯基的实数公理系统为无穷小微积分奠基

        近日,老翁在博文中提及群(Group)的公理化系统(4条),联想起塔尔斯基的实数公理化系统(8条)。有感。

今日,老翁亲自动手试了一试,果然灵验。现在,把塔尔斯基公理系统附在下面,供大家阅读思考。


袁萌  2月21日


附:Tarski's axiomatizationofthe reals
 In 1936, AlfredTarski set out anaxiomatization of the real numbers and their arithmetic,consisting of only the8 axioms shown below and a mere four primitive notions: theset of reals denotedR, a binary total order over R, denoted by infix <, abinary operation ofaddition over R, denoted by infix +, and the constant 1.
 
 The literatureoccasionallymentions this axiomatization but never goes into detail,notwithstanding itseconomy and elegant metamathematical properties. Thisaxiomatization appearslittle known, possibly because of its second-ordernature. 
Tarski's axiomatizationcan be seen as a version of the more usualdefinition of real numbers as theunique Dedekind-complete ordered field; it ishowever made much more concise byusing unorthodox variants of standardalgebraic axioms and other subtle tricks(see e.g. axioms 4 and 5, which combinetogether the usual four axioms ofabelian groups).
 
 The term"Tarski'saxiomatization of real numbers" also refers to the theoryof real closedfields, which Tarski showed completely axiomatizes thefirst-order theory of thestructure 〈R, +, ·, <〉.
The axioms
 
 Axioms of order (primitives: R,<):
 
 Axiom 1
     If x < y, then not y<x. That is, "<" is an asymmetric (非对称)relation.
 
 Axiom 2
     If x < z, there exists aysuch that x < y and y < z. In other words, "<" is denseinR.
 
 Axiom 3
     "<"isDedekind-complete. More formally, for all X, Y ? R, if for all x ∈ X and y ∈ Y, x < y,thenthere exists a z  such that for all x ∈ X and y ∈ Y, if z ≠ x and z ≠ y, then x <zand z < y.
 
 To clarify the above statementsomewhat, let X ? R and Y ? R. We now define two common English verbs inaparticular way that suits our purpose:
 
 X precedes Y if and only ifforevery x ∈ X and every y ∈ Y, x < y.
 
 The real number z separates XandY if and only if for every x ∈ X with x ≠ z and every y ∈ Y with y ≠ z, x < z andz< y.
 
 Axiom 3 can then be stated as:
 
 "If a set of realsprecedesanother set of reals, then there exists at least one real numberseparating thetwo sets."
 
 Axioms of addition (primitives:R, <, +):
 
 Axiom 4
 x + (y + z) = (x + z) + y.
 
 Axiom 5
     For all x, y, there existsaz such that x + z = y.
 
 Axiom 6
     If x + y < z + w, thenx< z or y < w.
 
 Axioms for one (primitives: R,<, +, 1):
 
 Axiom 7
     1 ∈ R.
 
 Axiom 8
     1 < 1 + 1.
 
 These axioms imply that R is alinearly ordered abelian group underaddition with distinguished element 1. R isalso Dedekind-complete anddivisible.
 
 Tarski stated, without proof,that these axioms gave a total ordering.The missing component was supplied in2008 by Stefanie Ucsnay.
 
 This axiomatization does notgive rise to a first-order theory, becausethe formal statement of axiom 3includes two universal quantifiers over allpossible subsets of R. Tarski provedthese 8 axioms and 4 primitive notionsindependent.
How these axioms imply a field
 
 Tarski sketched the (nontrivial)proof of how these axioms andprimitives imply the existence of a binaryoperation called multiplication andhaving the expected properties, so that R isa complete ordered field underaddition and multiplication. This proof buildscrucially on the integers withaddition being an abelian group and has itsorigins in Eudoxus' definition ofmagnituty.(全文完)
 
 
阅读更多
个人分类: 综合 原创
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭