# 塔尔斯基的实数公理系统为无穷小微积分奠基

近日，老翁在博文中提及群（Group）的公理化系统（4条），联想起塔尔斯基的实数公理化系统（8条）。有感。

In 1936, AlfredTarski set out anaxiomatization of the real numbers and their arithmetic,consisting of only the8 axioms shown below and a mere four primitive notions: theset of reals denotedR, a binary total order over R, denoted by infix <, abinary operation ofaddition over R, denoted by infix +, and the constant 1.

The literatureoccasionallymentions this axiomatization but never goes into detail,notwithstanding itseconomy and elegant metamathematical properties. Thisaxiomatization appearslittle known, possibly because of its second-ordernature.
Tarski's axiomatizationcan be seen as a version of the more usualdefinition of real numbers as theunique Dedekind-complete ordered field; it ishowever made much more concise byusing unorthodox variants of standardalgebraic axioms and other subtle tricks(see e.g. axioms 4 and 5, which combinetogether the usual four axioms ofabelian groups).

The term"Tarski'saxiomatization of real numbers" also refers to the theoryof real closedfields, which Tarski showed completely axiomatizes thefirst-order theory of thestructure 〈R, +, ·, <〉.
The axioms

Axioms of order (primitives: R,<):

Axiom 1
If x < y, then not y<x. That is, "<" is an asymmetric （非对称）relation.

Axiom 2
If x < z, there exists aysuch that x < y and y < z. In other words, "<" is denseinR.

Axiom 3
"<"isDedekind-complete. More formally, for all X, Y ? R, if for all x ∈ X and y ∈ Y, x < y,thenthere exists a z  such that for all x ∈ X and y ∈ Y, if z ≠ x and z ≠ y, then x <zand z < y.

To clarify the above statementsomewhat, let X ? R and Y ? R. We now define two common English verbs inaparticular way that suits our purpose:

X precedes Y if and only ifforevery x ∈ X and every y ∈ Y, x < y.

The real number z separates XandY if and only if for every x ∈ X with x ≠ z and every y ∈ Y with y ≠ z, x < z andz< y.

Axiom 3 can then be stated as:

"If a set of realsprecedesanother set of reals, then there exists at least one real numberseparating thetwo sets."

Axioms of addition (primitives:R, <, +):

Axiom 4
x + (y + z) = (x + z) + y.

Axiom 5
For all x, y, there existsaz such that x + z = y.

Axiom 6
If x + y < z + w, thenx< z or y < w.

Axioms for one (primitives: R,<, +, 1):

Axiom 7
1 ∈ R.

Axiom 8
1 < 1 + 1.

These axioms imply that R is alinearly ordered abelian group underaddition with distinguished element 1. R isalso Dedekind-complete anddivisible.

Tarski stated, without proof,that these axioms gave a total ordering.The missing component was supplied in2008 by Stefanie Ucsnay.

This axiomatization does notgive rise to a first-order theory, becausethe formal statement of axiom 3includes two universal quantifiers over allpossible subsets of R. Tarski provedthese 8 axioms and 4 primitive notionsindependent.
How these axioms imply a field

Tarski sketched the (nontrivial)proof of how these axioms andprimitives imply the existence of a binaryoperation called multiplication andhaving the expected properties, so that R isa complete ordered field underaddition and multiplication. This proof buildscrucially on the integers withaddition being an abelian group and has itsorigins in Eudoxus' definition ofmagnituty.（全文完）

#### 超实数（Hyper-reals）是什么人发明的？

2017-10-07 18:24:21

#### 微积分的历史演变与现状

2017-10-07 10:53:23

#### 学习微积分60年有感（I）

2017-12-31 05:30:36

#### 域的公理化定义

2018-02-22 15:26:02

#### 实数的塔尔斯基公理化系统

2018-02-05 07:02:16

#### (Math Foundation 笔记)1.实数公理和用公理证明2

2014-01-20 10:38:51

#### 塔尔斯基关于实数的公理系统，为什么是最简明的？

2018-02-07 18:32:23

#### 无穷小微积分的公理系统：

2017-12-30 06:15:38

#### 数学三大危机与无穷小微积分

2017-10-08 15:43:37

#### 无穷小放飞互联网，超实数奠基微积分

2013-07-07 02:08:41