数学分析课程笔记:实数集的基本公理及其一般性质

文章详细介绍了实数集的公理化定义,包括加法、乘法、序关系和完备性公理,并通过一系列推论证明了实数集的一些基本性质,如加法和乘法的运算规则、逆元的存在性以及正负数的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

02 实数集的基本公理及其一般性质

\quad 我们需要对实数集作一个公理化的定义。

实数集:称集合 R \mathbb{R} R实数集,若其满足:

1 o 1^{o} 1o:有一个加法运算 “ + + +”;

2 o 2^{o} 2o:有一个乘法运算 “ ⋅ \cdot ”;

3 o 3^{o} 3o:有序关系“ ≤ \le ”;

4 o 4^{o} 4o:满足 完备性公理(连续性公理)

\quad 实数集 R \mathbb{R} R 中的元素称为 实数

\quad 加法运算、乘法运算、序关系都比较好理解,什么是“完备性公理”?事实上,对于完备性公理,我们已经有了非常浅显的几何认识。比如:数轴上没有空隙。

实数集的基本公理

I. 加法公理 R \mathbb{R} R 上有一个运算 + + + 称为 加法,如果满足:

a a a ∃ \exists 中性元(零元) 0 0 0,使得 ∀   X ∈ R , x + 0 = x \forall ~ X\in \mathbb{R},x+0 = x  XR,x+0=x;

b b b ∀   x ∈ R \forall ~ x\in \mathbb{R}  xR,存在其负元 − x -x x,使得 x + ( − x ) = 0 x+(-x) = 0 x+(x)=0;

c c c:结合律: ∀   x , y , z ∈ R , ( x + y ) + z = x + ( y + z ) \forall ~ x,y,z \in \mathbb{R},(x+y)+z = x+(y+z)  x,y,zR,(x+y)+z=x+(y+z);

d d d:交换律: ∀   x , y ∈ R , x + y = y + x \forall ~ x,y\in \mathbb{R},x+y = y+x  x,yR,x+y=y+x.

\quad 另外,若集合 G G G 满足 I 中的条件 a , b , c a,b,c a,b,c,则称 G G G 为一个 ;若集合 G G G 同时满足 I 中的条件 a , b , c , d a,b,c,d a,b,c,d,则称 G G G 是一个 交换群Abel 群

II. 乘法公理 R \mathbb{R} R 上有一个运算 ⋅ \cdot 称为 乘法,如果满足:

a a a ∃ \exists 中性元(单位元) 1 ∈ R − { 0 } 1 \in \mathbb{R} -\{0\} 1R{0},使得 ∀   x ∈ R , x ⋅ 1 = x \forall ~ x\in \mathbb{R},x \cdot 1=x  xR,x1=x;

b b b ∀   x ∈ R − { 0 } \forall ~ x \in \mathbb{R} - \{0\}  xR{0},存在其逆元 x − 1 x^{-1} x1,使得 x ⋅ x − 1 = 1 x\cdot x^{-1} = 1 xx1=1;

c c c:结合律: ∀ x , y , z ∈ R , ( x ⋅ y ) ⋅ z = x ⋅ ( y ⋅ z ) \forall x,y,z\in \mathbb{R},(x\cdot y)\cdot z = x\cdot(y\cdot z) x,y,zR,(xy)z=x(yz);

d d d:交换律: ∀   x , y ∈ R , x ⋅ y = y ⋅ x \forall ~x,y \in \mathbb{R},x\cdot y = y \cdot x  x,yR,xy=yx.

\quad 显然, R − { 0 } \mathbb{R} - \{0\} R{0} 关于乘法构成一个群,且是 Abel 群。

I and II. 加法关于乘法的附加公理:(分配律) ∀   x , y , z ∈ R , ( x + y ) ⋅ z = x ⋅ z + y ⋅ z \forall ~ x,y,z \in \mathbb{R},(x+y)\cdot z = x \cdot z + y \cdot z  x,y,zR,(x+y)z=xz+yz.

Def. 代数域:集合 K K K 上若定义有加法、乘法、且满足分配律,则称 K K K 为一个 代数域

III. 序公理 R \mathbb{R} R 上有一个不等关系“ ≤ \le ”,如果满足:

a a a ∀   x ∈ R , x ≤ x \forall~x \in \mathbb{R},x\le x  xR,xx;

b b b ∀ x , y ∈ R , ( x ≤ y ) ∧ ( y ≤ x ) ⟹ ( x = y ) \forall x,y\in \mathbb{R},(x\le y)\land (y \le x) \Longrightarrow(x = y) x,yR,(xy)(yx)(x=y);

c c c ∀   x , y , z ∈ R , ( x ≤ y ) ∧ ( y ≤ z ) ⟹ ( x ≤ z ) \forall ~ x,y,z\in \mathbb{R},(x\le y)\land (y \le z) \Longrightarrow (x\le z)  x,y,zR,(xy)(yz)(xz);

d d d ∀   x , y ∈ R , ( x ≤ y ) ∨ ( y ≤ x ) \forall ~ x,y\in \mathbb{R},(x\le y) \lor (y \le x)  x,yR,(xy)(yx).

Def. 偏序集与线性序集:若集合 X X X 上具有满足 III 条件 a , b , c a,b,c a,b,c 的关系“ ≤ \le ”,则称 X X X偏序集;若集合 X X X 上具有同时满足 III 条件 a , b , c , d a,b,c,d a,b,c,d 的关系“ ≤ \le ”,则称 X X X线性序集

I and III. 加法与序的附加公理 ∀   x , y , z ∈ R , ( x ≤ y ) ⟹ ( x + z ≤ y + z ) \forall ~x,y,z \in \mathbb{R},(x\le y)\Longrightarrow (x+z \le y+z)  x,y,zR,(xy)(x+zy+z).

II and III. 乘法与序的附加公理 ( 0 ≤ x ) ∧ ( 0 ≤ y ) ⟹ ( 0 ≤ x ⋅ y ) (0\le x)\land (0 \le y)\Longrightarrow (0\le x\cdot y) (0x)(0y)(0xy).

IV. 完备性公理(连续性公理):若 X , Y X,Y X,Y R \mathbb{R} R 的两个非空子集,且对于 ∀   x ∈ X , y ∈ Y \forall ~x\in X,y \in Y  xX,yY,有 x ≤ y x\le y xy,则存在 c ∈ R c\in \mathbb{R} cR ,使得 x ≤ c ≤ y x\le c\le y xcy.

\quad 以上即为实数集的相关公理。可以说,任何满足以上公理的数学模型,都可以认为是实数集 R \mathbb{R} R 的一种具现。比如:

  • 实数轴;
  • 十进制无穷小数;
  • ……

\quad 关于公理化模型,有两点需要注意:

  • 无矛盾性:是否相容?
  • 范畴性:若 A , B A,B A,B 各自构造出实数集 R A , R B \mathbb{R}_{A},\mathbb{R}_{B} RA,RB,则应有 R A → f R B \mathbb{R}_{A} \xrightarrow{f} \mathbb{R}_{B} RAf RB,其中 f f f同构映射

实数集的一般性质

一、加法公理的推论

1 R \mathbb{R} R 中存在唯一的零元。

证明:反证法。

\quad 假设 R \mathbb{R} R 中同时有零元 0 1 , 0 2 0_{1},0_{2} 01,02,则:

0 1 = 0 1 + 0 2 = 0 2 + 0 1 = 0 2 0_{1} = 0_{1} + 0_{2} = 0_{2} + 0_{1} = 0_{2} 01=01+02=02+01=02

#

2:对于任意的 x ∈ R x \in \mathbb{R} xR,存在其唯一的负元 − x ∈ R {-x} \in \mathbb{R} xR.

证明:反证法。

\quad 任取 x ∈ R x\in \mathbb{R} xR,假设 x x x 同时存在两个负元 x 1 x_{1} x1 x 2 x_{2} x2,则:

x 1 = x 1 + 0 = x 1 + ( x + x 2 ) = ( x 1 + x ) + x 2 = 0 + x 2 = x 2 . x_{1}= x_{1} + 0 = x_{1} + (x+x_{2}) = (x_{1} + x) + x_{2} = 0 + x_{2} = x_{2}. x1=x1+0=x1+(x+x2)=(x1+x)+x2=0+x2=x2.

#

3:代数方程 a + x = b a+x = b a+x=b R \mathbb{R} R 中有唯一解 x = b + ( − a ) = b − a x = b+ (-a)=b-a x=b+(a)=ba

证明:

\quad a ∈ R a\in \mathbb{R} aR,则 ∃ ! \exists ! ! 负元 − a -a a. 于是:

( a + x = b ) ⟹ ( ( − a ) + ( a + x ) = ( − a ) + b ) ⟹ ( ( ( − a ) + a ) + x = ( − a ) + b ) ⟹ ( 0 + x = b + ( − a ) ) ⟹ ( x = b + ( − a ) ) \begin{aligned} (a+x = b) &\Longrightarrow ((-a) + (a + x) = (-a) + b)\\ &\Longrightarrow (((-a)+a) + x = (-a)+b)\\ &\Longrightarrow (0+x=b + (-a))\\ &\Longrightarrow (x = b+ (-a)) \end{aligned} (a+x=b)((a)+(a+x)=(a)+b)(((a)+a)+x=(a)+b)(0+x=b+(a))(x=b+(a))

#

\quad 注意,目前为止,我们都还没有定义 减法,现在出于简化符号的目的,将减法作为一个“记号”引入:

b + ( − a ) : = b − a . b+ (-a):=b-a. b+(a):=ba.

\quad 作业:乘法公理的推论:

  • R \mathbb{R} R 中存在唯一的 1 1 1.
  • ∀   x ∈ R − { 0 } \forall ~ x \in \mathbb{R}-\{0\}  xR{0},存在唯一的逆元 x − 1 x^{-1} x1.
  • ∀ a ∈ R − { 0 } \forall a \in \mathbb{R}-\{0\} aR{0} a ⋅ x = b a\cdot x=b ax=b 存在唯一的解 x = a − 1 ⋅ b x = a^{-1}\cdot b x=a1b.

二、乘法公理的推论

1 R \mathbb{R} R 中存在唯一的单位元 1 1 1.

证明:反证法。

\quad 假设 R \mathbb{R} R 中同时存在两个单位元 1 x , 1 y 1_{x},1_{y} 1x,1y,则:

1 x = 1 x ⋅ 1 y = 1 y ⋅ 1 x = 1 y . 1_{x} = 1_{x} \cdot 1_{y} = 1_{y} \cdot 1_{x} = 1_{y}. 1x=1x1y=1y1x=1y.

#

2:对于任意的 x ∈ R − { 0 } x\in\mathbb{R} - \{0\} xR{0},存在其唯一的逆元 x − 1 ∈ R − { 0 } x^{-1}\in \mathbb{R} - \{0\} x1R{0}.

证明:反证法。

\quad 假设 R − { 0 } \mathbb{R}-\{0\} R{0} 中同时存在 x x x 的两个逆元 y , z y,z y,z,则:

y = y ⋅ 1 = y ⋅ ( x ⋅ z ) = ( y ⋅ x ) ⋅ z = 1 ⋅ z = z . y = y \cdot 1 = y \cdot (x\cdot z) = (y \cdot x) \cdot z = 1\cdot z = z. y=y1=y(xz)=(yx)z=1z=z.

#

3:代数方程 a ⋅ x = b a\cdot x = b ax=b R − { 0 } \mathbb{R}- \{0\} R{0} 中存在唯一解 x = b ⋅ a − 1 = a − 1 ⋅ b x = b\cdot a^{-1} = a^{-1}\cdot b x=ba1=a1b.

证明:

( a ⋅ x = b ) ⟹ ( a − 1 ⋅ ( a ⋅ x ) = a − 1 ⋅ b ) ⟹ ( ( a − 1 ⋅ a ) ⋅ x = a − 1 ⋅ b ) ⟹ ( x = a − 1 ⋅ b ) \begin{aligned} (a\cdot x = b) &\Longrightarrow (a^{-1}\cdot (a\cdot x) = a^{-1}\cdot b)\\ &\Longrightarrow ((a^{-1}\cdot a)\cdot x = a^{-1}\cdot b)\\ &\Longrightarrow (x = a^{-1}\cdot b) \end{aligned} (ax=b)(a1(ax)=a1b)((a1a)x=a1b)(x=a1b)

#

\quad 思考:按照前面相似的逻辑,是否可以将除法作为“记号”引入?

b ⋅ a − 1 = b ÷ a . b \cdot a^{-1} = b \div a. ba1=b÷a.

三、加法公理与乘法公理联系的推论

1:对于任意的 x ∈ R x\in \mathbb{R} xR x ⋅ 0 = 0 ⋅ x = 0 x\cdot 0 = 0 \cdot x = 0 x0=0x=0.

证明:

( x ⋅ 0 ) = ( x ⋅ ( 0 + 0 ) ) = ( x ⋅ 0 + x ⋅ 0 ) ⟹ ( x ⋅ 0 + ( − x ⋅ 0 ) = x ⋅ 0 + x ⋅ 0 + ( − x ⋅ 0 ) ) ⟹ ( 0 = x ⋅ 0 ) ⟹ ( x ⋅ 0 = 0 ) \begin{aligned} &(x \cdot 0) = (x \cdot (0 + 0)) = (x\cdot 0 + x \cdot 0) \\ \Longrightarrow &(x\cdot 0 + (-x\cdot 0) = x \cdot 0 + x\cdot 0 + (-x \cdot 0))\\ \Longrightarrow &(0 = x\cdot 0)\\ \Longrightarrow &(x\cdot 0 = 0) \end{aligned} (x0)=(x(0+0))=(x0+x0)(x0+(x0)=x0+x0+(x0))(0=x0)(x0=0)

#

\quad 有趣的是,1 虽然是个关于乘法的结论,但在证明过程中,利用了加法!

\quad 1 可得推论:若 x ∈ R − { 0 } x \in \mathbb{R}-\{0\} xR{0},则 x − 1 ∈ R − { 0 } x^{-1} \in \mathbb{R} -\{0\} x1R{0}.

证明:反证法。

\quad x − 1 = 0 x^{-1} = 0 x1=0,则由 1 可得: x ⋅ 0 = x ⋅ x − 1 = 0 x\cdot 0 = x \cdot x^{-1} = 0 x0=xx1=0,产生矛盾。

#

2 ( x ⋅ y = 0 ) ⟹ ( x = 0 ) ∨ ( y = 0 ) (x\cdot y = 0) \Longrightarrow (x = 0) \lor (y=0) (xy=0)(x=0)(y=0).

证明:

\quad y = 0 y = 0 y=0,则命题成立。

\quad y ≠ 0 y\ne 0 y=0,则由 1 推论可知, y − 1 ≠ 0 y^{-1} \ne 0 y1=0,从而

( x ⋅ y = 0 ) ⟹ ( x ⋅ y ⋅ y − 1 = 0 ⋅ y − 1 ) ⟹ ( x = 0 ) \begin{aligned} (x \cdot y = 0) &\Longrightarrow (x\cdot y \cdot y^{-1} = 0 \cdot y^{-1})\\ &\Longrightarrow (x = 0) \end{aligned} (xy=0)(xyy1=0y1)(x=0)

#

3 ∀   x ∈ R , − x = ( − 1 ) ⋅ x \forall ~ x \in \mathbb{R},-x = (-1)\cdot x  xR,x=(1)x.

证明:

\quad 显然, − x -x x x x x 的负元,由负元的唯一性可知,只需证明 ( − 1 ) ⋅ x (-1)\cdot x (1)x 也是 x x x 的负元。事实上,

x + ( − 1 ) ⋅ x = 1 ⋅ x + ( − 1 ) ⋅ x = ( 1 + ( − 1 ) ) ⋅ x = 0 ⋅ x = 0. x + (-1) \cdot x = 1\cdot x + (-1)\cdot x = (1 + (-1))\cdot x = 0\cdot x = 0. x+(1)x=1x+(1)x=(1+(1))x=0x=0.

#

4 ∀   x ∈ R , ( − 1 ) ⋅ ( − x ) = x \forall ~ x \in \mathbb{R},(-1)\cdot (-x) = x  xR,(1)(x)=x.

证明:

\quad 显然, x x x − x -x x 的负元,由负元的唯一性,只需证明 ( − 1 ) ⋅ ( − x ) (-1)\cdot (-x) (1)(x) 也是 − x -x x 的负元。事实上,

( − 1 ) ⋅ ( − x ) + ( − x ) = ( − 1 ) ⋅ ( − x ) + 1 ⋅ ( − x ) = ( ( − 1 ) + 1 ) ⋅ ( − x ) = 0 ⋅ ( − x ) = 0. (-1)\cdot (-x) + (-x) = (-1)\cdot (-x) + 1 \cdot (-x) = ((-1)+1) \cdot (-x) = 0 \cdot (-x) = 0. (1)(x)+(x)=(1)(x)+1(x)=((1)+1)(x)=0(x)=0.

#

5 ∀   x ∈ R , ( − x ) ⋅ ( − x ) = x ⋅ x \forall ~ x\in \mathbb{R},(-x)\cdot(-x) = x\cdot x  xR,(x)(x)=xx.

证明:

( − x ) ⋅ ( − x ) = ( − 1 ) ⋅ x ⋅ ( − x ) = x ⋅ ( − 1 ) ⋅ ( − x ) = x ⋅ ( ( − 1 ) ⋅ ( − x ) ) = x ⋅ x . \begin{aligned} (-x)\cdot (-x) &= (-1)\cdot x \cdot (-x) \\ &=x \cdot (-1) \cdot (-x) \\ & = x\cdot ((-1)\cdot (-x)) \\ & = x\cdot x. \end{aligned} (x)(x)=(1)x(x)=x(1)(x)=x((1)(x))=xx.

#

四、序公理的推论

\quad 首先,说明一下,什么是严格不等式。

严格不等式:若 x ≤ y x\le y xy x ≠ y x \ne y x=y,则记 x < y x<y x<y,称为 严格不等式

1 ∀   x , y ∈ R , ( x < y ) ∨ ( x = y ) ∨ ( y < x ) \forall ~ x,y \in \mathbb{R},(x<y)\lor (x= y)\lor (y<x)  x,yR,(x<y)(x=y)(y<x).

证明:

\quad 由序公理: ( x ≤ y ) ∨ ( y ≤ x ) (x\le y)\lor (y \le x) (xy)(yx),若 x = y x = y x=y,则结论成立;若 x ≠ y x\ne y x=y,则 ( x < y ) ∨ ( y < x ) (x<y)\lor(y<x) (x<y)(y<x).

#

2 ∀   x , y , z ∈ R , ( x ≤ y ) ∧ ( y < z ) ⟹ ( x < z ) , ( x < y ) ∧ ( y ≤ z ) ⟹ ( x < z ) \forall ~ x,y,z \in \mathbb{R},(x\le y)\land(y<z)\Longrightarrow(x<z),(x< y)\land(y\le z)\Longrightarrow(x<z)  x,y,zR,(xy)(y<z)(x<z),(x<y)(yz)(x<z).

证明:

\quad 以第二个结论为例,

( x < y ) ∧ ( y ≤ z ) ⟹ ( x ≤ y ) ∧ ( y ≤ z ) ⟹ ( x ≤ z ) \begin{aligned} (x<y) \land(y \le z) &\Longrightarrow (x \le y) \land(y \le z) \\ &\Longrightarrow (x\le z) \end{aligned} (x<y)(yz)(xy)(yz)(xz)
再利用反证法。若 x = z x = z x=z,则

( x < y ) ∧ ( y ≤ z ) ⟹ ( x < y ) ∧ ( y ≤ x ) (x<y) \land(y \le z) \Longrightarrow (x <y) \land (y \le x) (x<y)(yz)(x<y)(yx)

从而产生矛盾。因此 x ≠ z x\ne z x=z.

#

五、加法公理与序公理联系的推论

1 ( x > y ) ⟹ ( x + z > y + z ) (x>y)\Longrightarrow(x+z>y+z) (x>y)(x+z>y+z).

证明:

\quad 由序公理, ( x > y ) ⟹ ( x ≥ y ) ⟹ ( x + z ≥ y + z ) (x>y)\Longrightarrow (x \ge y)\Longrightarrow (x+z \ge y+z) (x>y)(xy)(x+zy+z). 于是只要证明 x + z ≠ y + z x+z \ne y+z x+z=y+z.

\quad 反证法。若 x + z = y + z x+z = y +z x+z=y+z,则线性方程 x + z = ( y + z ) x + z = (y+z) x+z=(y+z) 有唯一解:

x = ( y + z ) + ( − z ) = y + ( z + ( − z ) ) = y + 0 = y x = (y+z)+ (-z) = y+ (z + (-z)) = y + 0 =y x=(y+z)+(z)=y+(z+(z))=y+0=y

x > y x>y x>y 矛盾。

#

2 ( x > 0 ) ⟹ ( − x < 0 ) (x>0)\Longrightarrow(-x<0) (x>0)(x<0).

证明:

( x > 0 ) ⟹ ( x + ( − x ) > − x ) ⟹ ( 0 > − x ) \begin{aligned} (x>0)&\Longrightarrow (x+ (-x)>-x)\\ &\Longrightarrow (0>-x) \end{aligned} (x>0)(x+(x)>x)(0>x)

#

3 ( x > y ) ∧ ( z ≥ w ) ⟹ ( x + z > y + w ) (x>y)\land(z\ge w)\Longrightarrow (x+z >y+w) (x>y)(zw)(x+z>y+w).

4 ( x ≥ y ) ∧ ( z > w ) ⟹ ( x + z > y + w ) (x\ge y)\land(z >w)\Longrightarrow (x+z>y+w) (xy)(z>w)(x+z>y+w).

\quad 只证 1,2;3,4 自证。

六、乘法公理与序公理联系的推论

1 ( x > 0 ) ∧ ( y > 0 ) ⟹ ( x ⋅ y > 0 ) (x>0)\land (y>0)\Longrightarrow (x\cdot y>0) (x>0)(y>0)(xy>0).

证明:

\quad 由序公理与乘法公理的附加公理,

( x > 0 ) ∧ ( y > 0 ) ⟹ ( x ≥ 0 ) ∧ ( y ≥ 0 ) ⟹ ( x ⋅ y ≥ 0 ) (x>0)\land (y>0)\Longrightarrow(x\ge 0)\land (y\ge 0)\Longrightarrow (x\cdot y \ge 0) (x>0)(y>0)(x0)(y0)(xy0)

因此只需证明 x ⋅ y ≠ 0 x\cdot y\ne 0 xy=0. 反证法,若 x ⋅ y = 0 x\cdot y=0 xy=0,则由前面的结论

( x ⋅ y = 0 ) ⟹ ( x = 0 ) ∨ ( y = 0 ) . (x\cdot y = 0)\Longrightarrow (x=0)\lor (y=0). (xy=0)(x=0)(y=0).

从而产生矛盾。

#

2 ( x < 0 ) ∧ ( y < 0 ) ⟹ ( x ⋅ y > 0 ) (x<0)\land (y<0)\Longrightarrow (x\cdot y>0) (x<0)(y<0)(xy>0).

2 与 3 类似,我们证明3.

3 ( x > 0 ) ∧ ( y < 0 ) ⟹ ( x ⋅ y < 0 ) (x>0)\land (y<0)\Longrightarrow (x \cdot y<0) (x>0)(y<0)(xy<0).

证明:

( x > 0 ) ∧ ( y < 0 ) ⟹ ( x > 0 ) ∧ ( − y > 0 ) ⟹ ( x ⋅ ( − y ) > 0 ) ⟹ ( x ⋅ ( − 1 ) ⋅ y > 0 ) ⟹ ( ( x ⋅ ( − 1 ) ) ⋅ y > 0 ) ⟹ ( ( ( − 1 ) ⋅ x ) ⋅ y > 0 ) ⟹ ( ( − 1 ) ⋅ ( x ⋅ y ) > 0 ) ⟹ ( − ( x ⋅ y ) > 0 ) ⟹ ( x ⋅ y < 0 ) . \begin{aligned} (x>0)\land (y<0) &\Longrightarrow (x>0)\land (-y>0)\\ &\Longrightarrow (x\cdot (-y)>0) \\ &\Longrightarrow (x\cdot (-1)\cdot y >0) \\ &\Longrightarrow ((x\cdot(-1))\cdot y >0) \\ &\Longrightarrow (((-1)\cdot x)\cdot y >0) \\ &\Longrightarrow ((-1)\cdot(x\cdot y)>0)\\ &\Longrightarrow (-(x\cdot y)>0)\\ &\Longrightarrow (x\cdot y<0). \end{aligned} (x>0)(y<0)(x>0)(y>0)(x(y)>0)(x(1)y>0)((x(1))y>0)(((1)x)y>0)((1)(xy)>0)((xy)>0)(xy<0).

#

4 ( x > y ) ∧ ( z > 0 ) ⟹ ( x ⋅ z > y ⋅ z ) (x>y)\land(z>0)\Longrightarrow (x\cdot z > y\cdot z) (x>y)(z>0)(xz>yz).

证明:

( x > y ) ∧ ( z > 0 ) ⟹ ( x − y > 0 ) ∧ ( z > 0 ) ⟹ ( ( x − y ) ⋅ z > 0 ) ⟹ ( x ⋅ z − y ⋅ z > 0 ) ⟹ ( x ⋅ z > y ⋅ z ) . \begin{aligned} (x>y)\land (z>0) &\Longrightarrow (x-y>0) \land (z>0) \\ &\Longrightarrow ((x-y)\cdot z >0)\\ &\Longrightarrow (x\cdot z - y \cdot z >0) \\ &\Longrightarrow (x\cdot z >y \cdot z). \end{aligned} (x>y)(z>0)(xy>0)(z>0)((xy)z>0)(xzyz>0)(xz>yz).

#

4 与 5 类似,我们证明 4.

5 ( x > y ) ∧ ( z < 0 ) ⟹ ( x ⋅ z < y ⋅ z ) (x>y)\land(z<0)\Longrightarrow (x\cdot z<y\cdot z) (x>y)(z<0)(xz<yz).

七、加法公理、乘法公理与序公理的推论

1 1 > 0 1>0 1>0.

证明:

\quad 由序公理, ( x > y ) ∨ ( x = y ) ∨ ( x < y ) (x>y)\lor(x=y)\lor(x<y) (x>y)(x=y)(x<y).

\quad 显然 1 ≠ 0 1\ne 0 1=0,我们证明: 1 > 0 1>0 1>0. 反证法。假设 1 < 0 1<0 1<0,于是

( 1 < 0 ) ∧ ( 1 < 0 ) ⟹ ( 1 ⋅ 1 > 0 ) ⟹ ( 1 > 0 ) . (1<0)\land (1<0) \Longrightarrow (1\cdot 1 >0) \Longrightarrow (1>0). (1<0)(1<0)(11>0)(1>0).

从而产生矛盾。

#

2 ( 0 < x ) ⟹ ( x − 1 ) > 0 ,   ( 0 < x < y ) ⟹ ( 0 < y − 1 < x − 1 ) (0<x)\Longrightarrow (x^{-1})>0,~ (0<x<y) \Longrightarrow (0<y^{-1}<x^{-1}) (0<x)(x1)>0, (0<x<y)(0<y1<x1).

证明:

\quad 反证法。假设 x − 1 < 0 x^{-1}<0 x1<0,则

( 0 < x ) ∧ ( x − 1 < 0 ) ⟹ ( x ⋅ x − 1 < 0 ) ⟹ ( 1 < 0 ) . (0<x)\land(x^{-1}<0) \Longrightarrow (x\cdot x^{-1}<0)\Longrightarrow (1<0). (0<x)(x1<0)(xx1<0)(1<0).

从而产生矛盾。

\quad 显然 y ≠ 0 y\ne 0 y=0,否则 x = 0 x=0 x=0,矛盾。于是 ( y > 0 ) ⟹ ( y − 1 > 0 ) (y>0)\Longrightarrow (y^{-1}>0) (y>0)(y1>0),从而

( x < y ) ∧ ( y − 1 > 0 ) ⟹ ( x ⋅ y − 1 < y ⋅ y − 1 ) ⟹ ( x ⋅ y < 1 ) ⟹ ( x − 1 ⋅ x ⋅ y − 1 < x − 1 ) ⟹ ( y − 1 < x − 1 ) \begin{aligned} (x<y) \land (y^{-1}>0)&\Longrightarrow (x\cdot y^{-1} <y\cdot y^{-1})\\ &\Longrightarrow (x\cdot y <1)\\ &\Longrightarrow (x^{-1}\cdot x\cdot y^{-1}<x^{-1})\\ &\Longrightarrow (y^{-1}<x^{-1}) \end{aligned} (x<y)(y1>0)(xy1<yy1)(xy<1)(x1xy1<x1)(y1<x1)

#


\quad 目前为止,实数公理以及其基本推论介绍完毕。下面做一个总结。

Def. 正数:大于零的数就是 正数

Ex 1 1 1 是正数。

Ex:若 x x x 是正数,则 x − 1 x^{-1} x1 也是正数。

Def:小于零的数称为 负数

Ex 1 1 1 的负元是负数。


参考

  1. 张平. 数学分析课程.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值