非阿基米德几何,从何而来??

非阿基米德几何,从何而来??

  在几何学中,不存在无穷小量,被人们称为阿基米德原理,但是,1899年,希尔伯特在《几何基础》中指出:几何学含有无穷小量不会导致逻辑矛盾,预言了非阿基米德几何学的合理性。

   然而,半个世纪过去了。非阿基米德几何学没有铺出现。1960年,鲁宾逊引入了超实数系统(直线),至此,非阿基米德几何学应运而生。

    本文附件2是我们在今年3月21日发表的“倒数与非阿基米德几何”;附件1是进入21世纪非阿基米德几何学迅速发展的趋势。

  让我们国内数百万大学生知晓这段历史,不做“小书呆”(宝贝)。

袁萌  陈启清  8月11日

附件1:

Several approaches to non-archimedean geometry

Brian Conrad1

Introduction Let k be a non-archimedean field: a field that is complete with respect to a specified nontrivial non-archimedean absolute value |·|. There is a classical theory of k-analytic manifolds (often used in the theory of algebraic groups with k a local field), and it rests upon versions of the inverse and implicit function theorems that can be proved for convergent power series over k by adapting the traditional proofs over R and C. Serre’s Harvard lectures [S] on Lie groups and Lie algebras develop this point of view, for example. However, these kinds of spaces have limited geometric interest because they are totally disconnected. For global geometric applications (such as uniformization questions, as first arose in Tate’s study of elliptic curves with split multiplicative reduction over a non-archimedean field), it is desirable to have a much richer theory, one in which there is a meaningful way to say that the closed unit ball is “connected”. More generally, we want a satisfactory theory of coherent sheaves (and hence a theory of “analytic continuation”). Such a theory was first introduced by Tate in the early 1960’s, and then systematically developed (building on Tate’s remarkable results) by a number of mathematicians. Though it was initially a subject of specialized interest, in recent years the importance and power of Tate’s theory of rigid-analytic spaces (and its variants, due especially to the work of Raynaud, Berkovich, and Huber) has become ever

(全文请见“无穷小微积分”网站)

附件2:

百度一下“无穷小微积分”,访问该网站,下载“Elementary Calculus”,查找第二章46页Figure 2.1.2,此时,在你的眼前就是非阿基米德几何的导数示意图了。

 

在无穷小微积分教材中到处都是非阿基米德几何示意图,因为,无穷小就是一种非阿基米德量。

 

坦率地,学习微积分,,离不开希尔伯特5组几何公理。

 

其实,超实平面几何就是一种非阿基米德几何。

 

告别传统(阿基米德几何),迎向未来(非阿基米德几何)。

袁萌  陈启清  2019年3月21日

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值