对比语言-图像预训练(CLIP),这是一种创新的多模态建模策略,能够创建视觉和语言的联合表示。CLIP 的效果非常出色,可以用于构建高度特定且性能卓越的分类器,而无需任何训练数据。本文将深入探讨其理论基础,对比 CLIP 与传统方法的差异,并逐步解析其架构。
传统图像分类器的局限性
在传统的图像分类任务中,例如训练模型区分猫和狗,通常的做法是向模型提供大量标注好的猫和狗的图像,然后通过误差反向传播逐步调整模型参数,直到模型能够准确区分两者。
这种监督学习方法在许多任务中表现良好,但它也存在一个显著的缺点:模型往往过度依赖于训练数据的特定分布,导致其泛化能力有限。换句话说,模型在训练数据上表现优异,但在面对新的、未见过的数据时,性能可能会大幅下降。
以 ImageNet 数据集为例,传统的监督模型在训练集上表现良好,但当面对包含不同类别表示的类似数据集时,性能会显著下降。相比之下,CLIP 的表现则更加稳健和通用。这是因为 CLIP 采用了完全不同的分类方法——通