平面坐标系中判断点P是否在线段上AB上的常用方法总结

在平面坐标系中,判断点 P 是否在线段 AB 上,可以通过以下 ​​5种常用算法​​ 实现,涵盖数学原理、实现步骤和代码示例:


​1. 参数化方程法(推荐)​

​原理​

将点 P 表示为线段 AB 的线性插值,检查参数 t 是否在 [0,1] 范围内且满足共线性。

​步骤​
  1. ​共线性检验​​:
    计算向量 AP 和 AB 的叉积(二维叉积为标量):

    Cross=(xP​−xA​)(yB​−yA​)−(yP​−yA​)(xB​−xA​)

    若 ∣Cross∣>ϵ(微小阈值,如 10−6),则点不共线。

  2. ​参数 t 检查​​:
    若共线,计算参数:

    t=∥AB∥2(xP​−xA​)(xB​−xA​)+(yP​−yA​)(yB​−yA​)​

    若 t∈[0,1],则 P 在线段上。

​代码实现​
 

python

复制

def is_point_on_segment(A, B, P, epsilon=1e-6):
    cross = (P[0] - A[0]) * (B[1] - A[1]) - (P[1] - A[1]) * (B[0] - A[0])
    if abs(cross) > epsilon:  # 不共线
        return False
    dot = (P[0] - A[0]) * (B[0] - A[0]) + (P[1] - A[1]) * (B[1] - A[1])
    t = dot / ((B[0] - A[0])**2 + (B[1] - A[1])**2)
    return 0 <= t <= 1

​2. 距离和检验法​

​原理​

若点 P 在线段 AB 上,则 AP+PB=AB。

​步骤​
  1. 计算距离 AP、PB、AB。
  2. 检查 ∣AP+PB−AB∣<ϵ。
​代码实现​
 

python

复制

def is_point_on_segment_distance(A, B, P, epsilon=1e-6):
    d_AB = ((B[0] - A[0])**2 + (B[1] - A[1])**2)**0.5
    d_AP = ((P[0] - A[0])**2 + (P[1] - A[1])**2)**0.5
    d_PB = ((B[0] - P[0])**2 + (B[1] - P[1])**2)**0.5
    return abs(d_AP + d_PB - d_AB) < epsilon

​3. 直线方程代入法​

​原理​

将 P 的坐标代入线段 AB 的直线方程,检查是否满足且位于端点之间。

​步骤​
  1. 若线段非垂直(xA​=xB​),检查斜率一致性:xP​−xA​yP​−yA​​=xB​−xA​yB​−yA​​
  2. 若线段垂直(xA​=xB​),检查 xP​=xA​ 且 yP​ 在 [yA​,yB​] 内。
  3. 最后检查 P 的坐标是否在 A 和 B 的范围内。
​代码实现​
 

python

复制

def is_point_on_segment_equation(A, B, P, epsilon=1e-6):
    if abs(B[0] - A[0]) < epsilon:  # 垂直线段
        return abs(P[0] - A[0]) < epsilon and min(A[1], B[1]) <= P[1] <= max(A[1], B[1])
    else:
        slope = (B[1] - A[1]) / (B[0] - A[0])
        on_line = abs((P[1] - A[1]) - slope * (P[0] - A[0])) < epsilon
        in_range = min(A[0], B[0]) <= P[0] <= max(A[0], B[0])
        return on_line and in_range

​4. 边界框快速排除法​

​原理​

先检查 P 是否在线段 AB 的轴对齐包围盒(AABB)内,再结合共线性检验。

​步骤​
  1. 检查 P 的坐标是否满足:min(xA​,xB​)≤xP​≤max(xA​,xB​)min(yA​,yB​)≤yP​≤max(yA​,yB​)
  2. 若在包围盒内,再进行共线性检验(如方法1)。
​代码实现​
 

python

复制

def is_point_on_segment_bbox(A, B, P, epsilon=1e-6):
    in_bbox = (min(A[0], B[0]) <= P[0] <= max(A[0], B[0])) and \
              (min(A[1], B[1]) <= P[1] <= max(A[1], B[1]))
    if not in_bbox:
        return False
    cross = (P[0] - A[0]) * (B[1] - A[1]) - (P[1] - A[1]) * (B[0] - A[0])
    return abs(cross) < epsilon

​5. 面积法(三角形面积为零)​

​原理​

若 P 在线段 AB 上,则三角形 ABP 的面积为 0。

​步骤​
  1. 计算叉积的绝对值(即平行四边形面积):Area=∣(xA​(yB​−yP​)+xB​(yP​−yA​)+xP​(yA​−yB​))∣
  2. 若 Area<ϵ,则共线,再检查坐标范围。
​代码实现​
 

python

复制

def is_point_on_segment_area(A, B, P, epsilon=1e-6):
    area = abs(A[0]*(B[1] - P[1]) + B[0]*(P[1] - A[1]) + P[0]*(A[1] - B[1]))
    if area > epsilon:
        return False
    return min(A[0], B[0]) <= P[0] <= max(A[0], B[0]) and \
           min(A[1], B[1]) <= P[1] <= max(A[1], B[1])

​算法对比​

方法优点缺点适用场景
​参数化方程法​高精度,直接计算参数 t需计算叉积和点积通用场景(推荐)
​距离和检验法​直观易理解浮点误差敏感快速近似判断
​直线方程法​显式处理垂直/水平线段需分情况处理斜率已知线段方向时
​边界框法​快速排除明显不在的点需额外共线性检验预处理优化
​面积法​数学简洁计算面积后仍需范围检查教学演示

​总结​

  • ​推荐方法1(参数化方程法)​​:综合精度和效率,适合大多数场景。
  • ​性能优化​​:先用方法4(边界框法)快速排除,再使用方法1精确判断。
  • ​特殊处理​​:垂直线段或水平线段可简化计算(如直接比较坐标)。

通过上述方法,可灵活应对不同需求下的点与线段位置关系判断问题。

<think>嗯,用户问的是洛谷的C++题目P5735,我需要先确认这道题的具体内容。首先,洛谷是一个在线的算法题库,里面有很多编程题目,P5735应该是某个题目的编号。 我应该先查找P5735的题目内容。记得之前可能接触过类似的题目,但不确定具体是哪一道。可能需要回忆或者模拟一下常见的题目类型。比如,洛谷的题目通常涉及基础算法、数学问题或者数据结构等。题目编号P5735可能属于入门或基础难度的题目。 假设题目是关于计算几何的,比如计算两之间的距离,或者更复杂的几何形状的面积。或者可能是数组操作,比如排序、查找等。也有可能涉及到字符串处理或者简单的动态规划。 用户提到的是C++,所以需要给出C++的解答方法。可能需要提供代码示例,但根据之前的对话,用户可能需要先理解题目的要求和解题思路,再给出具体的实现步骤。 接下来,我需要模拟用户可能的疑问。比如,用户可能卡在某个具体的步骤上,比如如何计算多边形的周长,或者如何处理输入输出格式。或者可能对题目的某个条件不太理解,需要解释清楚题目的要求。 另外,考虑到用户可能刚开始学习编程,解答需要详细且步骤清晰。可能需要分步骤解释,比如先读入数据,再处理数据,最后输出结果。同时要注意代码的正确性和效率,是否符合题目的时间限制和内存限制。 可能还需要考虑一些常见的错误,比如浮数精度问题,或者在计算过程中出现的边界情况。例如,如果题目涉及到浮数运算,需要提醒用户注意数据类型的选择,避免精度丢失。 另外,如果题目涉及到数学公式,比如计算两间的欧几里得距离,可能需要给出公式的推导过程,并用LaTeX格式呈现,如$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$,这样用户更容易理解。 还要检查是否需要处理多组输入,或者输入是否有特定的格式。比如,题目可能要求输入多个的坐标,然后计算这些组成的多边形的周长。这时候需要读取每个的坐标,并依次计算相邻之间的距离,最后累加得到周长。 在代码实现部分,可能需要使用结构体或数组来存储的坐标,然后用循环遍历计算每对相邻之间的距离。同时,要注意最后一个和第一个是否需要连接,如果是闭合多边形的话。 此外,可能还需要考虑输入的坐标是整数还是浮数,这会影响到变量的数据类型选择。例如,使用double类型来存储坐标和计算结果,以确保精度。 最后,测试样例也是重要的,需要提供一些测试用例,帮助用户验证他们的代码是否正确。比如,输入几个的坐标,手动计算周长,然后与程序输出对比,确保结果一致。 总结一下,解答这个问题的步骤可能包括:理解题目要求,分析输入输出格式,设计算法步骤,处理数据结构和计算逻辑,编写代码,测试和调试。需要将这些步骤详细地解释给用户,确保他们能够跟随并理解每个部分。</think>--- ### 题目简介 **洛谷P5735** 是一道基础编程题,题目名为 **“【深基7.例1】距离函数”**,属于数学计算类问题。 **核心目标**:输入平面直角坐标系中三个的坐标,计算并输出这三组成的三角形的周长。 **难度**:入门级(适合掌握基本输入输出和数学运算的C++初学者)。 --- ### 题目要求 #### 输入格式 输入共三行,每行两个实数 $x_i, y_i$,表示三个的坐标 $(x_1,y_1),(x_2,y_2),(x_3,y_3)$。 **示例输入**: ``` 0 0 0 3 4 0 ``` #### 输出格式 输出一个两位小数的浮数,表示三角形周长。 **示例输出**: ``` 12.00 ``` --- ### 解题思路 1. **计算两间距离** 使用欧几里得距离公式: $$ d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} $$ 2. **计算三边长度** 分别计算 $AB$, $BC$, $CA$ 三边的距离。 3. **累加求和** 将三边长度相加得到周长。 --- ### C++代码实现 ```cpp #include <iostream> #include <cmath> #include <iomanip> // 用于控制输出格式 using namespace std; // 计算两间距离的函数 double distance(double x1, double y1, double x2, double y2) { return sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2)); } int main() { double x1, y1, x2, y2, x3, y3; cin >> x1 >> y1 >> x2 >> y2 >> x3 >> y3; // 计算三边长度 double d1 = distance(x1, y1, x2, y2); double d2 = distance(x2, y2, x3, y3); double d3 = distance(x3, y3, x1, y1); // 输出周长,保留两位小数 cout << fixed << setprecision(2) << d1 + d2 + d3 << endl; return 0; } ``` --- ### 代码解析 1. **输入处理** - 使用 `cin` 读取三个的坐标,存储为浮数 `double` 类型。 2. **函数封装** - 定义 `distance` 函数计算两间距离,避免重复代码。 3. **数学计算** - `sqrt()` 和 `pow()` 函数需包含头文件 `<cmath>`。 4. **输出控制** - 使用 `fixed << setprecision(2)` 固定小数位数,确保输出两位小数。 --- ### 测试样例验证 输入: ``` 0 0 0 3 4 0 ``` 计算过程: 1. $AB$ 边长:$\sqrt{(0-0)^2 + (3-0)^2} = 3.00$ 2. $BC$ 边长:$\sqrt{(4-0)^2 + (0-3)^2} = 5.00$ 3. $CA$ 边长:$\sqrt{(4-0)^2 + (0-0)^2} = 4.00$ 4. 周长:$3 + 5 + 4 = 12.00$ 输出结果与题目示例一致,代码逻辑正确。 --- ### 常见问题 1. **为什么用 `double` 而不用 `float`?** `double` 精度更高(15-17位有效数字),避免计算误差导致答案错误。 2. **是否需要判断共线?** 题目默认输入为合法三角形,无需额外判断。 如果需要其他优化(如减少重复计算)或更详细的解释,请随时补充提问!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuanpan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值