几个惊人数字

1天中有14个小时是对着电脑的,8:30-0:30,中间有2个小时是在车上和吃饭,洗澡的时间。1天的睡眠时间维持为6个小时。

1天中基本的运动就是行路(如果这也算是运动的话),1个星期基本的运动还是行路,1年基本的运动依然是行路。记忆中是从大2下学期开始(不在玩滑板),就没有真正意义上的因为运动而流汗了。她最近同我讲过1句话,我除了每天洗冷水是比较健康的之外,就没有什么是健康的了。

或者我应该把晚上的时间放在看书上,但可以看得进去么?好难……总是坚持,总是放弃,没有压力,没有动力。

我会否死得很快?

### 回答1: 好的。 1. 两条相交直线的交点到这两条直线所在直线的距离之积相等: 这个结论可以通过三角形面积公式证明。 2. 全等三角形: 如果一个三角形的三条边长都相等,那么这个三角形就是等边三角形。这个结论可以通过比较边长来证明。 3. 三角形内角和为 180°: 如果将一个三角形折叠成一条直线,那么这条直线的角度之和就是 180°。这个结论可以通过平面角的定义来证明。 4. 奇偶性: 如果一个整数能被 2 整除,那么它就是偶数;如果一个整数不能被 2 整除,那么它就是奇数。这个结论可以通过对 2 取模运算来证明。 ### 回答2: 数学证明作为数学的重要部分,一方面用于验证数学理论的正确性,另一方面也可以带来乐趣和游戏性。下面是几个有趣的数学证明的推荐: 1. 无理数的证明:数学家乔治·卡托的证明中,通过建立实数和有理数之间的一一对应关系来证明实数集合比有理数集合更大。该证明引发了数学上著名的“势”悖论。 2. 四色定理的证明:四色定理指的是地图上用四种颜色恰好可以标记出相邻国家,使得没有两个相邻国家颜色相同。虽然该定理的证明非常复杂,但是它展现了数学中引人入胜的思想和证明技巧。 3. 费尔马大定理的证明:费尔马大定理是数学中最有名的未解难题之一,它指出$x^n + y^n = z^n$(其中n大于2)没有正整数解。直到20世纪才由数学家安德鲁·怀尔斯证明,展现了数学中惊人的智慧和创造力。 4. 魔幻方阵的证明:魔幻方阵是一个规则的方形格子,其中每行、每列和对角线上的数字之和都相等。通过构建方程组和矩阵,可以证明魔幻方阵的存在性和特殊性。 5. π的无理性证明:π是一个无理数,即无法表示为两个整数的比值。证明π的无理性需要运用到数学的分析方法和逻辑演绎,给人们带来了探索无穷数学世界的乐趣。 这些有趣的数学证明不仅展示了数学的美妙和深刻,也让我们深入了解数学的逻辑思维和推理方法,丰富了我们对数学的理解和兴趣。 ### 回答3: 数学证明是数学领域中重要的部分,有时可能会让人感到枯燥和困惑。然而,也有一些有趣的数学证明,能够让人对数学产生兴趣。以下是几个有趣的数学证明的例子: 1. 无理数的存在性证明:证明根号2是无理数。这个证明最早由古希腊数学家赫罗多图斯完成。它使用反证法,假设根号2是有理数,然后推导出一个矛盾的结论,证明了根号2必然是无理数。 2. 费马大定理的证明:费马大定理由法国数学家费马提出,它声称当n大于2时,方程x^n + y^n = z^n没有整数解。这个问题困扰了数学界几个世纪,直到1995年英国数学家安德鲁•怀尔斯证明了这个定理。这个证明十分复杂,但也非常有趣。 3. 四色定理的证明:四色定理声称任何平面上的地图都可以用四种颜色进行着色,且相邻的地区颜色不同。这个定理在19世纪和20世纪早期引起了人们的广泛关注。最终,在1976年,数学家伯纳斯•休斯证明了这个定理。他的证明综合运用了图论和计算机技术,是数学史上的一个重要里程碑。 这些例子只是数学证明中的一小部分,展示了数学的美妙和神奇之处。数学证明不仅可以增加我们对数学的兴趣,还有助于培养我们在逻辑推理和问题解决方面的能力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值