huggingface半精度预训练模型BLIP-2 inference报错

文章讲述了在使用BLIP-2模型进行图片caption时遇到的apex包不兼容问题。作者发现由于apex包版本过旧,导致在半精度(fp16)环境下运行模型出错。解决方案是升级apex包或者使用torch.autocast进行精度转换,但后者可能影响结果质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目场景:

使用BLIP-2,对图片进行caption。


问题描述

按照model card上的描述执行:

# pip install accelerate
import torch
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration

processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xxl")
model 
### 下载并使用BLIP-2模型 为了从Hugging Face下载并使用BLIP-2模型,可以遵循特定的步骤来确保顺利安装和应用该模型。首先,需要准备环境以便能够执行必要的命令。这通常涉及到安装`huggingface_hub`库以及配置访问令牌[^2]。 #### 安装依赖项 对于初次使用者来说,应当先更新或安装`huggingface_hub`工具包,并设置好个人认证信息以获得API访问权限: ```bash pip install -U huggingface_hub ``` 接着利用`huggingface-cli`来进行具体的资源拉取工作。需要注意的是,在运行这些命令之前应该已经完成了网站上的账户创建流程并且获取到了自己的访问密钥(token),这个token用于验证身份从而允许下载受保护的内容。 #### 获取模型及其元数据 针对想要使用的具体版本或者变体形式(比如BLIP-2),可以通过指定仓库名称的方式精确指向目标位置。这里假设要加载名为`OpenGVLab/InternVid`的数据集作为例子说明如何操作;实际情况下应替换为目标模型的确切路径名。同时也要记得调整本地存储目录(`--local-dir`)参数至合适的位置保存所取得的信息。 ```bash huggingface-cli download --token YOUR_ACCESS_TOKEN_HERE blip2-model-name-or-id --local-dir ./blip2_model_directory ``` 上述命令中的`YOUR_ACCESS_TOKEN_HERE`需被真实的用户Token替代,而`blip2-model-name-or-id`则代表了BLIP-2的具体标识符或者是其所在的空间地址。 #### 加载与调用模型 一旦成功地把所需的组件都安置到位之后,就可以借助于Python脚本或者其他支持的语言接口去实例化预训练好的神经网络结构并对新输入做预测分析了。下面给出了一段简单的代码片段展示怎样快速启动一个基于Transformers库构建的应用程序[^3]: ```python from transformers import Blip2Processor, Blip2ForConditionalGeneration import torch processor = Blip2Processor.from_pretrained("./blip2_model_directory") model = Blip2ForConditionalGeneration.from_pretrained("./blip2_model_directory") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # 假设有一个图像文件 'image.png' inputs = processor(images=image, text="描述这张图片", return_tensors="pt").to(device) generated_ids = model.generate(**inputs) result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() print(result) ``` 这段代码展示了如何初始化处理器对象(processor)和条件生成器(model), 并通过给定提示词对一张图片进行描述的任务处理过程。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值