BLIP2模型加载在不同设备上

背景

现在大语言模型越来越大,占用的内存越来越多,这导致内存较小的设备无法体验大模型的效果。transformer提供了将一个大模型分别加载在gpu和cpu上的方法。

加载方法

  1. 以多模态模型BLIP2为例,将其语言模型放在gpu上,其余部分放在cpu上。配置加载预加载模型的device_map.device_map可以设置为auto,则根据设备的显存情况,自动加载在gpu或者cpu上。
  2. 使用BLIP2模型地址
device_map = {'language_model':0,\
	'language_projection':'cpu', \
	'qformer':'cpu', \
	'query_tokens':'cpu', \
	'vision_model':'cpu'}
multimodal = Blip2ForConditionalGeneration.from_pretrained("huggingface_opt",torch_dtype=torch.float16,device_map=device_map)

如上所示,将language_model放在0号显卡上,其余模型放在cpu上。模型的名称在模型的index文件中
在这里插入图片描述
测试情况

加载位置显存占用耗时备注
GPU13G0.5s
GPU +CPU10G2s语言放在0号显卡上,其余模型放在cpu上
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值