做世界地图数据可视化最简单的3种方式,完全不需要懂编码!

有没有那种简单易上手,没有什么编程门槛的世界地图数据可视化工具。

实用场景:一份有关全世界人口的excel表格,在不涉及编程的情况下,如何将其通过世界地图展现出来?

如何满足这些要求,最重要的一点就是得有一个易于使用的界面,而且也不需要懂得编程知识,就能让你可以轻松使用他们来创建地图。基于此给大家推荐了3个好用的工具,其适用范围、优缺点也说明了,以下工具基本满足了以上需求。

1.Google Earth

Google Earth 是一款功能强大的地球浏览工具,可以让你在三维空间中查看、探测、浏览世界各地的地理景观。

基于谷歌地球的地理信息系统(GIS)软件,支持Windows、Mac OS X和Linux操作系统,用户可以使用它浏览地球表面的卫星影像,示意图、地形、3D建筑物等。Google Earth让用户可以在地球上探索,在视频模式下观看地球,也可以进行地图浏览。Google Earth的应用范围非常广泛,可以用于地理信息系统(GIS)、测绘、环境研究、地质勘探等。有助于政府、企业、学术机构和个人获得全球性的地理信息,并利用Google Earth分析、可视化和实现全球性的地理信息。

优点在于其丰富的资源,具有卫星影像和示意图等多种地理信息,可以让用户更好地完成相关项目,同时也拥有容易上手的操作界面,使用起来非常方便。

缺点在于其会消耗大量的网络流量,在某些低速网络环境下,可能会对用户的网络体验造成不好的影响。此外,由于Google Earth的数据源可能存在延时,所以在某些情况下可能会影响用户的使用体验。
在这里插入图片描述

2. OpenStreetMap

OpenStreetMap 是一个免费的地图服务,提供了地理数据,可以帮助你创建自己的地图应用。

OpenStreetMap(简称OSM)是一个开源的地图服务,由志愿者提供各种地理信息,主要用于地图绘制,可以提供实时地图数据,以便用户查看和使用。OpenStreetMap的应用范围很广,可以用于地图绘制、路径规划、地理信息系统(GIS)、移动定位等。它的数据可以用于网站的地图服务,也可以用于个人手机定位系统,可以更好地满足用户的日常定位需求。

优点是免费、开放、可靠,数据更新速度快,用户可以自行编辑、绘制地图数据,使用起来非常方便。

缺点是其覆盖面不够广泛,且有一定的数据准确度问题,部分地图数据存在缺失,需要用户自行编辑完善,才能保证更好的使用体验。
在这里插入图片描述

3、FineReport

其实正主已经在下面回答了,非常的全面,但相之于以上2种,我本人在工作中更多的还是使用FineReport。FineReport报表 - 帆软,专业的大数据BI和分析平台提供商其实正主已经在下面回答了,非常的全面,但相之于以上2种,我本人在工作中更多的还是使用FineReport。

FineReport本质是一个报表工具,但是在地图可视化方面也非常的出色,它可以连接多个数据库,自然也涵盖题主所说的EXCEL。此外在可视化地图方面支持的类型也更加丰富,不仅包含常规的GIS点地图、区域地图,还有精准定位的点地图:
在这里插入图片描述

显示迁移活动的流向地图:
在这里插入图片描述

同时显示区域、点、以及流向的数据地图
在这里插入图片描述

当然只是这样还是不够,FineReport还支持钻取地图,题主可以进行一步地展示由国家——>省——>市——>区的数据,并实时操作与分析。
在这里插入图片描述

优点:FineReport将地图功能内嵌到报表中,使得其使用范围更加广泛。不仅支持单独的地图展示,更支持地图式报表,在报表中插入地图组合其他图表的使用,能够承载更多的信息展示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

示例中提到的数据报表模板分享给大家—— https://s.fanruan.com/yzgwg 零基础快速上手,还能根据需求进行个性化修改哦

Python数据可视化通常使用一些强大的库,如`matplotlib`、`geopandas`、`folium`等。其中,`geopandas`基于Pandas的数据结构,可以方便地处理地理空间数据;`folium`则结合了JavaScript库Leaflet,用于创建交互式的Web地。 以下是一个简单的步骤概述: 1. 安装所需库:首先需要安装`geopandas`, `pandas`, 可能还需要`matplotlib`和`folium`。你可以通过pip命令进行安装: ``` pip install geopandas pandas matplotlib folium ``` 2. 加载数据:导入地理空间数据,这可能是CSV文件,包含经纬度和其他相关信息,如行政区划数据。 ```python data = geopandas.read_file('your_data.shp') ``` 3. 数据清洗和准备:根据需要对数据进行预处理,例如筛选特定区域或添加新列。 4. 创建基础地:使用`folium.Map()`创建地的基础框架,并设置中心点、缩放级别等。 ```python m = folium.Map(location=[data['latitude'].mean(), data['longitude'].mean()], zoom_start=8) ``` 5. 绘制地理位置:将数据转换为GeoJSON格式并添加到地上。 ```python folium.GeoJson(data.to_json()).add_to(m) ``` 6. 添加标记或颜色编码:你可以给每个位置添加标签或根据数据值改变颜色,以呈现数据分布。 ```python folium.Marker(data['location'][0]).add_to(m) m.choropleth(geo_data=data, columns=['column_name', 'value'], fill_color='YlGnBu', key_on='feature.properties.column_name') ``` 7. 显示和保存地:最后展示地,可以选择在浏览器窗口显示或保存成HTML文件。 ```python m.save('your_map.html') m.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leo.yuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值