📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)金融预测模型的现有研究与艾略特波浪理论的应用
金融市场因其复杂的动态性和不确定性,一直是学术界和业界关注的焦点。传统的统计学方法,如时间序列分析、回归分析等,在一定程度上能够捕捉到市场的部分规律,但面对非线性、非平稳性的数据时显得力不从心。机器学习方法,尤其是近年来兴起的深度学习技术,凭借其强大的特征提取能力和对复杂模式的学习能力,为金融预测带来了新的曙光。然而,现有的基于深度学习的金融预测模型大多集中在直接利用价格或成交量等原始数据进行预测,而忽略了金融市场中存在的一些经典理论,比如艾略特波浪理论。
艾略特波浪理论是一种描述市场价格运动规律的技术分析方法,它认为市场走势由一系列可识别的波浪模式组成,这些模式反映了投资者的心理变化以及群体行为模式。根据这一理论