向量究竟是什么--3b1b课程笔记

向量被物理学生视为空间中的箭头,具有长度和方向;对计算机学生来说,向量是有序数表,如房价分析中的面积和价格;数学上,向量是任何可乘对象。在二维空间,向量由x和y坐标定义,而在三维空间则添加了z轴。向量加法遵循平行四边形法则,数乘则是对向量长度的缩放。线性代数连接了这些几何和数表的概念。
摘要由CSDN通过智能技术生成

向量究竟是什么–3b1b课程笔记

考察向量的形式

我们接下来以三个形式来解释向量

物理学生的视角

在物理学生的视角来看,向量 因该说矢量,是空间中的箭头。
决定一个矢量的是它的长度和方向。

计算机学生的视角

在计算机学生的角度来看,向量是一个有序的数表
for example 你再做一个有关房价的分析,只关心面积和价格,
a ⃗ = [ v a l u e a r e a ] (0) \vec{a} = \left[ \begin{matrix} value\\ area\\ \end{matrix} \right] \tag{0} a =[valuearea](0)
那么这个向量的两个维度就是面积和价格,注意这里的维度是不可倒置的,在这里向量只是列表的一个花哨的说法,之所以这个向量是二维的只是因为这个列表的长度为2

数学学生的视角

数学系试图概括这两种观点,大致的说就是向量可以是任何东西只要保证两个向量相乘或者数字与向量相乘是有意义的即可

思考一种向量的特定形式

因为我较为关注向量的几何方面,所以当接下来每当引入一个向量的新主题时,我需要一个箭头,更具体地说,考虑这个箭头落在某个坐标系中,例如x-y平面,并且箭头的落脚点在原点。
这与之前物理系学生的看法不同,因为在他们眼中,向量可以在空间中自由落脚
但是在线代当中,向量经常以原点作为起点
一旦理解了向量是空间当中的箭头的这种观点,我们就来看看向量是有序的数字列表的这种观点,我们可以通过向量坐标来理解它。
也许在这两种观点下我们应当重新说一下坐标系,因为二者的碰撞,似乎形成了线代的重要概念

二维空间的向量

首先我们画一条水平的线,我们命名它为x轴
然后画一条竖直的线,我们命名它为y轴,两轴交点我们称之为原点。
请添加图片描述

你应该把这个原点堪称这个空间的中心和所有向量的根源。
任选一个坐标轴上的长度代表1,你就可以在坐标轴上标记刻度来表示距离
接下来如果我们要用它来表示二维空间时
我们会把它延长为网格线
请添加图片描述

b ⃗ = [ − 2 3 ] (1) \vec{b} = \left[ \begin{matrix} -2\\ 3 \\ \end{matrix} \right] \tag{1} b =[23](1)
第一个数告诉你你要沿着x轴走多远
第二个数告诉你你要沿着y轴走多远
请添加图片描述

为了和坐标区分开通常是把这个括号竖起来然后用方括号括起来
A ( − 2 , 3 ) (2) A \left( \begin{matrix} -2 , 3 \\ \end{matrix} \right) \tag{2} A(2,3)(2)
每一对
[ x y ] 都对应着唯一的 c ⃗ 并且这个是可逆的这里的 c ⃗ 不指向特定向量 \left[ \begin{matrix} x \\ y \\ \end{matrix} \right] 都对应着唯一的 \vec{c} 并且这个是可逆的 这里的\vec{c} 不指向特定向量 [xy]都对应着唯一的c 并且这个是可逆的这里的c 不指向特定向量

三维空间的向量

我们来填上第三个轴,z轴,同时垂直于x和y轴请添加图片描述

这时每一个 d ⃗ 都有唯一一个 [ x y z ] 这时每一个 \vec{d} 都有唯一一个 \left[ \begin{matrix} x \\ y \\ z \\ \end{matrix} \right] 这时每一个d 都有唯一一个 xyz

向量加法和向量数乘

终于来点有意义的了毕竟线性代数的每一个主题都好像围绕它
幸运的是这两种运算的定义都很直接
现在我们来假设有如此两个向量
请添加图片描述

为了把他们相加我们用到了平行四边形法则
请添加图片描述

顺带一提
这个向量加法的定义差不多是线性代数中唯一允许向量离开原点的情形
也许是错的反正我懂得不多,瞎说的
那为什么这样的加法是合理的不用其他方法定义呢
这里我们把每个向量看成一种特定的运动,那么新的向量就是二者的和运动,并且这种运动不会因为运动的前后顺序有所改变
[ x y z ] 其中 x , y , z 分别对应了在各自轴方向上的运动 \left[ \begin{matrix} x \\ y \\ z \\ \end{matrix} \right] 其中x,y,z分别对应了在各自轴方向上的运动 xyz 其中xyz分别对应了在各自轴方向上的运动
或许你可以把它看成数轴上的加法的一种拓展
当然这是教小孩子的方法
请添加图片描述

2 + 5 = 7 2+5=7 2+5=7
现在我们在数值上来看向量加法
请添加图片描述

a ⃗ = [ 1 2 ] \vec{a}= \left[ \begin{matrix} 1 \\ 2 \\ \end{matrix} \right] a =[12]
b ⃗ = [ 3 − 1 ] \vec{b}= \left[ \begin{matrix} 3 \\ -1 \\ \end{matrix} \right] b =[31]
a ⃗ + b ⃗ = [ 1 2 ] + [ 3 − 1 ] = [ 1 + 3 2 − 1 ] = [ 4 1 ] \vec{a}+\vec{b}= \left[ \begin{matrix} 1\\ 2 \\ \end{matrix} \right]+\left[\begin{matrix}3 \\-1 \\\end{matrix}\right]= \left[ \begin{matrix} 1+3 \\ 2-1 \\ \end{matrix} \right]= \left[ \begin{matrix} 4 \\ 1 \\ \end{matrix} \right] a +b =[12]+[31]=[1+321]=[41]
最后是如此形式
请添加图片描述

另一个基础运算就是向量数乘
如果你选择
2 ∗ a ⃗ 这意味着你将 a ⃗ 的长度拉长了两倍 2*\vec{a}这意味着你将\vec{a}的长度拉长了两倍 2a 这意味着你将a 的长度拉长了两倍
这种拉伸/压缩,有时还让向量反向的过程被称之为缩放,而前面用来表示缩放系数的数我们称之为标量。
显然的标量和数字的内涵在某些时候是互通的
从数字来看
我们用上一个例子中的向量那么
2 ∗ a ⃗ = 2 ∗ [ 3 1 ] = [ 6 2 ] 2*\vec{a}=2*\left[\begin{matrix} 3\\ 1\\ \end{matrix} \right]= \left[ \begin{matrix} 6 \\ 2 \\ \end{matrix} \right] 2a =2[31]=[62]
所以将向量看成数字列表那么向量与标量相乘就是将向量中的每个分量与标量相乘

小节结语

线性代数的魅力不在于将向量/数据当成一个几何或者数表,而是在于它是一个二者之间转换的桥梁,我们可以通过桥尽情的观赏两岸的美景

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值