使用YOLOV5-6.2预训练模型(yolov5s)进行detect的详细说明(detect.py)文件解析

本文详细介绍了如何使用YOLOv5-6.2的预训练模型detect.py进行图像识别。包括源文件和预训练模型的下载、Python和PyTorch版本要求、文件目录结构,以及测试单张图片和文件夹中图片的命令行参数。重点讲解了参数如--device、--output、--save-img、--save-txt、--save-conf和--tensorboard的用途,同时提到了--aug参数对精度的影响。
摘要由CSDN通过智能技术生成

目录

    • 准备
      • 源文件和预训练文件下载
      • python版本以及torch版本说明:
      • 文件目录说明
      • 测试文件
    • detect.py使用
      • 测试单张图片
      • 测试一个文件夹里的图片

准备

源文件和预训练文件下载

下载链接:https://github.com/ultralytics/yolov5/releases/tag/v6.2
源文件和预训练模型如下:
在这里插入图片描述

python版本以及torch版本说明:

  • python:3.9.3
  • pytorch:
    在这里插入图片描述

因为我是cuda 11.8,所以是安装了这个版本的。但不是只有该版本才能使用v5-6.2。由于6.2版本是2022年发布的,所以相近几年的都可以

文件目录说明

如图:
在这里插入图片描述

测试文件

demo2.jpg在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月司

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值