2019-Augmented Intention Model for Next-Location Prediction from Graphical Trajectory Context

本文提出了一种增强意图递归神经网络(AI-RNN)模型,用于从图形轨迹上下文中预测多样化的轨迹位置。通过图卷积网络增强用户旅行意图,并使用门控循环单元进行预测,解决了数据稀疏、用户意图提取困难的问题,尤其在低相似度场景下表现出色。
摘要由CSDN通过智能技术生成

[1] Jin C, Lin Z, Wu M. Augmented Intention Model for Next-Location Prediction from Graphical Trajectory Context[J]. Wireless Communications and Mobile Computing, 2019.

【augment】[ɔːɡˈment] 增加;增大

Abstract

Human trajectory prediction is an essential task for various applications such as travel recommendation, location-sensitive advertisement, and traffic planning. Most existing approaches are sequential-model based and produce a prediction by mining behavior patterns. However, the effectiveness of pattern-based methods is not as good as expected in real-life conditions, such as data sparse or data missing. Moreover, due to the technical limitations of sensors or the traffic situation at the given time, people going to the same place may produce diferent trajectories. trajectories. Even for people traveling along the same route, the observed transit records are not exactly the same. Terefore trajectories are always diverse, and extracting user intention from trajectories is difficult. In this paper, we propose an augmented-intention recurrent neural network (AI-RNN) model to predict locations in diverse trajectories. We first propose three strategies to generate graph structures to demonstrate travel context and then leverage graph convolutional networks to augment user travel intentions under graph view. Finally, we use gated recurrent units with augmented node vectors to predict human trajectories. We experiment with two representative real-life datasets and evaluate the performance of the proposed model by comparing its results with those of other state-of-the-art models. The results demonstrate that the AI-RNN model outperforms other methods in terms of top-k accuracy, especially in scenarios with low similarity.

  • 现有问题:1.(现有方法预测准确性不高)大多数现有的人类轨迹预测方法都是基于序列模型的,并通过挖掘行为模式来产生预测。然而,基于模式(pattern)的方法在现实生活中的有效性并不像预期得那样好,例如数据稀疏或数据缺失。2. (如何获取用户出行意图?)轨迹是多种多样的,从轨迹中提取用户意图是很困难的。
  • 本文提出了一个“目的增强的递归神经网络模型(AI-RNN Model)“即[Augmented-Intention Recurrent Neural Network Model]来预测不同轨迹的位置。
  • 具体方法:
      1. 首先提出三种生成图结构的策略展示轨迹上下文;
      2. 利用图卷积网络(GCN)来增强用户旅行意图;
      3. 使用带增广节点向量的门控循环单元(GRU)来预测人的轨迹
  • 实验及结果:数据集[2个:一个是作者收集的,另一个是Foursquare]。结果表明,AI-RNN模型在top-k精度上优于其他方法,特别是在相似度较低的场景下。

1 Introduction

  • 用户轨迹点间的迁移具有随机性(randomness)和模糊性(vagueness)—— 对next-location prediction造成困难
  • 大多数用户没有规律的日常出行模式
  • 统计或基于模式的方法假设用户行为模式是可重复和可预测的,忽略了现实生活场景中的随机性和模糊性
  • next-location prediction问题的3个关键挑战:▲数据的质量受到用户活动和技术限制▲序列模型的准确性受到很多因素的影响▲如何挖掘每条轨迹的潜在语义上下文信息
  • 在过去十年间,概率模型(probability models)和模糊模型(fuzzy models)提出来用来解决随机性和模糊性的问题。很多需要预定义的特征,如距离、速度等

  在AI-RNN模型中,我们使用节点的图结构为每个用户根据历史轨迹建立意图。每个节点被嵌入并结合其相邻节点的特征。因此,AI-RNN能够描述不同地点的明显特征,并利用GCN模型扩展点的上下文语义。为了选择合适的节点来产生旅行目的,我们还提出了三种选择策略来解释不同情况下的旅行目的。然后我们使用GCN来增强轨迹中每个点的向量,并使用RNN与这些增强的意图点一起预测下一个位置。


  贡献:(i)提出了一个AI-RNN模型来捕捉大规模旅行记录的随机性和模糊性困难。因此,AI-RNN是一种既考虑轨迹图结构考虑序列模式端到端轨迹预测方法。(ii)设计了三种上下文选择策略来增强用户的意图,包括随机选择、面向路径方向的选择和路径概率选择,这些都针对了用户移动的各种情况。我们针对不同的轨迹评估这些策略,并确定在特殊情况下哪种选择策略最有效。


2 预备知识

  1. 对于给定的轨迹,需要两个预处理步骤数据清洗(data cleaning, 消除潜在的精度误差)、轨迹压缩(trajectory compression,去除冗余数据)
  2. 规则性(regularity):表示给定用户轨迹的相似性。
  3. 轨迹意图(trajectory intention)是轨迹语义信息的一种表示。给定一个轨迹P,我们可以提取一组特征作为这个轨迹的意图。正式地说,意图——轨迹长度,轨迹复杂度,速度,持续时间等。
  4. GRU是RNN中的一种门控机制,Cho等人[10]于2014年引入,使每个循环单元自适应地捕捉不同时间尺度的依赖关系。门控单元用来调节内部信息的流动。它有三个主要部分,即reset gate、update gate和激活单元(avtivation unit)。GRU最初是在机器翻译领域被引入的,这表明这种模型能够学习语言短语的语义和句法的表示。类比到轨迹预测,它不仅可以记住之前发生的事情,还可以学习每个用户轨迹的内部语义,从而更好地理解。
  1. GNN ·利用图结构和节点特征学习节点的表示向量通过聚合相邻节点的表示来迭代更新节点的表示·。
  2. GCN的模型: Z = f ( X , A ) = s o f t m a x ( A ^ R e L U ( A ^ X W ( 0 ) ) W ( 1 ) ) Z = f(X, A) = softmax(\hat AReLU(\hat AXW^{(0)})W^{(1)}) Z=f(X,A)=softmax(A^ReLU(
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值