09【matplotlib常用统计图】01绘制散点图

案例

假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温和随时间(天)变化的某种规律?

a = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
b = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]

数据来源:http://lishi.tianqi.com/beijing/index.html

如何绘制散点图

# -*- coding: utf-8 -*-

'''
@Time    : 2020/11/28 22:42
@Author  : yuhui
@Email   : 3476237164@qq.com
@FileName: matplotlib_6.py
@Software: PyCharm
'''

"""09【matplotlib常用统计图】01绘制散点图"""

"""假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温和随时间(天)变化的某种规律?

a = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
b = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]

数据来源:http://lishi.tianqi.com/beijing/index.html"""


from matplotlib import pyplot as plt

# 解决中文乱码
plt.rcParams["font.sans-serif"]=["KaiTi"]
plt.rcParams["font.family"]="sans-serif"
# 解决符号无法显示的问题
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像时负号'-'显示为方块的问题

"""设置图形大小和图片品质"""
fig=plt.figure(
    figsize=(16,9),
    dpi=100,
)

x3=range(1,32)  # 1~31天
y3 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]  # 3月份  31天

x10=range(51,82)
y10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]  # 10月份  31天

"""绘制散点图"""
# 在一个画布上绘制两幅散点图
# 3月份数据
plt.scatter(x3,y3,label="3月份")  # plt.scatter(x轴数据,y轴数据)
# 10月份数据
plt.scatter(x10,y10,label="10月份")  # 将y10数据的散点与y3数据的散点分隔开来
# 否则y3数据的散点和y10数据的散点会重合在一起

# 添加图例,让图例显示出来
plt.legend(loc="upper left")

# 调整x轴刻度
_x=list(x3)+list(x10)
_xticks=[f"3月{i}日" for i in x3]+[f"10月{i}日" for i in x3]
plt.xticks(_x[::3],_xticks[::3],rotation=45)

"""添加描述信息"""
plt.xlabel("日期")
plt.ylabel("温度/℃")
plt.title("北京2016年3,10月份每天白天的最高气温")

plt.show()

在这里插入图片描述

散点图的更多应用场景

  • 不同条件(维度)之间的内在关联关系
  • 观察数据的离散聚合程度

总结

  • 如何绘制散点图
plt.scatter(x3,y3,label="3月份")  # plt.scatter(x轴数据,y轴数据)
  • 如何在一个画布上绘制出两幅散点图
"""绘制散点图"""
# 在一个画布上绘制两幅散点图
# 3月份数据
plt.scatter(x3,y3,label="3月份")  # plt.scatter(x轴数据,y轴数据)
# 10月份数据
plt.scatter(x10,y10,label="10月份")  # 将y10数据的散点与y3数据的散点分隔开来
# 否则y3数据的散点和y10数据的散点会重合在一起
  • 如何设置散点图的x轴刻度字符
# 调整x轴刻度
_x=list(x3)+list(x10)
_xticks=[f"3月{i}日" for i in x3]+[f"10月{i}日" for i in x3]
plt.xticks(_x[::3],_xticks[::3],rotation=45)
  • 散点图的更多的应用场景
    • 不同条件(维度)之间的内在关联关系
    • 观察数据的离散聚合程度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值