如何使用GIST+LIBLINEAR分类器提取CIFAR-10 dataset数据集中图像特征,并用测试数据进行实验



上学期开了多媒体的课程,把其中一个课程设计实现的过程与大家分享。

 



转载请注明出处,谢谢。





最近整理文件的时候,发现了我以前写的文档和源码,附上github的下载地址



https://github.com/bigfishman/Gist-LIBLINEAR-CIFAR-10   



喜欢的朋友可以fork


这个课程设计是为了实现图像分类的整个过程,通过完成整个的工作过程,更好的理解图像分类这一概念,提高自己的理论与实践结合的能力。整个项目分为四大步:导入数据、特征提取部分、分类器训练部分、标签预测部分。根据课程,我们选择的数据集为CIFAR-10,特征提取采用的是GIST特征提取方法,分类方法我们使用的是LIBLINEAR中自带的TrainPredict程序。到最后得出结果,进行结果分析。

工具及设计方案详细介绍

CIFAR-10 dataset

CIFAR-10数据集包括6000032x32彩色图像,分布在在10,每个类有6000幅图像。这60000幅图片中分别包括50000幅训练图像和10000幅测试图像。  

数据集被分成了五个训练文件和一个测试文件,每一个文件都有10000张图片。测试文件中随机的包含了每个类的1000幅图片,但是每个训练批次中的图像是随机的,其中包含的图像并不是固定一样的。所以一些培训批次可能某一个类包含更多的图像。而五个训练文件,每个类的总数为5000个,这样就保证了样本的概率平衡。

还需要注意的是,从CIFAR-10中加载的内容中的data数据是整数,需要我们转换成图片,在网站上面我们可以看到也给出了相应的解释。每一个文件中有一个10000x3072N数组。数组的每一行存储一个32x32的彩色图像。前1024项代表的红色,中间1024个代表的是绿色,和最后1024代表的是蓝色。图像存储是按行主序,使数组的前32项是图像的第一排红色通道值。

GIST特征提取

根据项目提供的网站,我们可以大致知道,GIST特征提取是提出一个识别现实世界的计算模型,这个模型绕过个别对象或区域的分割和处理。用一个五维的感知维度来代表一个场景的主要内容,包括自然性、开放性、粗糙度、扩张性和坚固性。这些维度能够可靠的估计使用的光谱和粗定位信息,虽有可用这些维度来代表一个场景图片。

LIBLINEAR分类器

LIBLINEAR是一个用于大规模数据分类的线性分类器,支持逻辑回归和向量机。同时,LIBLINEAR还为开发者提供了好用的命令行和库接口。不管是开发者还是深层次的使用者,LIBLINEAR都有对应的文档供其查阅。实验证明,LIBLINEAR对于大规模数据分析十分有效。

从上面的数据集我们可以知道,数据的数量为60000,而相应的类却仅仅为10,数据数量远远大于数据类别。所以我们使用LIBLINEAR分类器,

具体设计方案

从相应网站下载相应软件。这里CIFAR-10我们下载MATLAB版,解压数据得到训练和测试数据,可以在MATLAB中用LOAD加载,只是现在的数据是整数类型,我们需要将其转换成图片,然后对转换后的图片进行特征提取,将相应的结果保存下来,保存的格式非常重要,我们可以将从LIBLINEAR中下载的数据中的heart-scale打开,记住相应的格式为:labelIDfeartures。重复将所有的图片都做一遍,然后将所有的结果保存到一个特定的地方(Feartures.txt),就相当于特征已经提取出来,接下来要做的只是运用LIBLINEAR分类器将所得的特征进行分类(Train),然后用相应的数据进行测试然后进行标签预测(Predict)。从而完成整个图片分类过程。

实践操作

导入数据

实践部分我们根据上面的具体设计来进行



图一:下载的CIFAR-10数据集包

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,首先我们需要安装PyTorch,可以通过以下命令安装: ``` pip install torch torchvision ``` 然后我们加载预训练的VGG-16模型,可以使用以下代码: ```python import torch import torch.nn as nn import torchvision.models as models # 加载预训练的VGG-16模型 vgg16 = models.vgg16(pretrained=True) ``` 接下来,我们需要对图像进行预处理,使其能够被VGG-16模型接受。VGG-16模型需要输入的图像大小为224x224,而且需要进行标准化处理。我们可以使用以下代码对图像进行预处理: ```python import torchvision.transforms as transforms # 预处理图像 transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ``` 接下来,我们可以使用预处理后的图像作为输入,通过VGG-16模型进行前向传播得到预测结果。我们可以使用以下代码: ```python from PIL import Image # 加载图像 image = Image.open("image.jpg") # 预处理图像 image = transform(image) # 增加一个维度 image = image.unsqueeze(0) # 前向传播 output = vgg16(image) # 输出预测结果 print(output) ``` 其,"image.jpg"是我们要分类的图像,可以根据需要替换为其他图像的路径。输出的结果是一个向量,表示图像属于1000个类别的每一个类别的概率。我们可以使用以下代码获取最终的预测结果: ```python # 加载标签 with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # 获取概率最大的类别 probs, indices = torch.topk(output, 5) for i in indices[0]: print(categories[i]) ``` 其,"imagenet_classes.txt"是包含1000个类别标签的文件,可以在https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a下载到。输出的结果是概率最大的5个类别,我们可以根据需要修改输出的数量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值