一、算法简介
PrincipalCurvatures(主曲率估计) 是一种用于计算点云表面曲率的算法。曲率描述了曲面局部的弯曲程度,是表面几何特征的重要指标。在点云处理中,估计表面的曲率对于形状分析、物体识别、表面重建等任务非常重要。
主曲率是曲面上某一点的最大和最小曲率方向。通过计算点云的主曲率,我们可以获得点云中每个点的局部形状特征。通常情况下,主曲率包括两个主要参数:最大主曲率(最大曲率方向上的曲率)和最小主曲率(最小曲率方向上的曲率)。
二、算法原理
PrincipalCurvatures 计算的核心思想是基于点云中每个点的局部表面信息,使用主成分分析(PCA)来提取该点局部的曲率信息。
-
邻域点选择:首先,为每个点选择一个邻域,可以通过半径搜索或K近邻来确定邻域点集。
-
协方差矩阵计算:然后,对于每个点的邻域,计算协方差矩阵。协方差矩阵反映了点云在该区域的局部几何结构。
-
主成分分析(PCA):通过对协方差矩阵进行特征值分解,得到特征值和特征向量。特征值分别代表表面法线方向上的曲率