盛宴已过请大家系统学习,人工智能理性期学习发展规划。
人工智能技术目前发展为以深度学习为主要分支的不确定科学计算,初级阶段仅仅是一种关系型问题的研究,下一步应该是因果关系演化研究。2008年吴恩达等以开放斯坦福大学在线教育方式实现人工智能教育普及开始到现在遍地的人工智能学院进入高效教育说明互联网时代随着信息积累已经开始形态转变为教育边界模糊同时出现各种干扰信息,人工智能在这11年发展中最早的系统教育是CMU的最早20多年前创办的人工智能本科专业。
CMU课程分析
人工智能本科项目课程主要包括:数学和统计学、计算机科学、人工智能、科学与工程、人文与艺术等课程。具体如下:
第一部分:数学与统计学核心课程(6门课程)
计算机科学的数学基础、微分和积分、微积分和逼近、矩阵和线性变换、计算机科学家的概率论、现代回归
第二部分:计算机科学核心课程(5门课程加新生入学课程)
命令式计算原理、函数式编程原理、并行和顺序数据结构和算法、计算机系统导论、计算机科学的伟大理论观点
第三部分:人工智能核心(3门课程和人工智能概念)
人工智能概念、AI表示和问题解决、机器学习入门、自然语言处理入门/计算机视觉简介(方向二选一)
第四部分:伦理选修课(选修以下1门课程)
新生研讨会:人工智能与人性计算中的道德与政策问题AI、社会与人类
第五部分:AI群选修课程(4方向选一个方向)
决策和机器人:神经计算、真相,正义与算法、认知机器人、AI的战略推理、机器人技术规划技巧、移动机器人编程实验室、机器人运动学与动力学、规划,执行和学习
机器学习:深化强化学习与控制、用于文本挖掘的机器学习、高级数据分析、深度学习入门
感知和语言:搜索引擎、语音处理、计算感知、计算摄影、视觉传感器
人与人之间的互动:设计以人为中心的系统、人机交互、向人们学习、智能产品和服务设计工作室
第六部分:人文与艺术
作为计算机科学学院通识教育要求的一部分,AI本科专业的学生需参加7门人文和艺术课程,其中必须有认知科学或认知心理学。例如:认知心理学、人类信息处理和人工智能、感知、人类记忆、视觉认知、认知建模、语言与思想、人类和机器的学习等课程。
第七部分:科学和工程
作为计算机科学学院通识教育要求的一部分,AI本科专业的学生需要参加四门科学与工程课程。
综上分析在这几年来形成了五大学派稳定的向认知计算过渡。同时在该项技术上是以1992年到2002年互联网时代以来2014年2019年基本完善了发展方向。那么该技术在工程上发展为:大数据存储实时计算、数据挖掘、自然语言处理、语音识别、计算机视觉。研究方向应该主要从统计开始转向随机过程及量子空间分布现代数学问题。经典的学术方向是非参数学习研究,例如:强化学习、无监督学习、元学习、对偶学习。从今年开始盛宴已过之后的理论需要系统的学习,因此我从个人学习经历总结非计算机专业与计算机专业特点把系统学习课程列处理大家一起学习讨论(由于我个人是计算机应用与交通统计两个学位)认知计算于与人工智能基础课程:
猜想新一代认知操作系统与芯片:
人工智能发展肯定带来新的安全问题,任何一个新生事物在进化发展都会取代旧事物同时由于本身的系统性带来安全问题。那么人工智能安全主要表现在通信安全、芯片安全、操作系统安全、算法应用安全。综上述我认为下一个热点认知计算是结合人工智能、区块链毫米波通信技术、RSIC-V为基础的MIPS芯片生态。例如清华大学的天机芯片雏形、日本丰田以近轨卫星6G通信结合氢能为基础的自动驾驶。未来认知计算时代应该是一个:卫星通信+6G毫米波结合区块链通信、RSIC定制芯片、认知操作系统、认知算法的时代。以上仅是个人业余时间读书感悟。