欧拉-伯努利梁横向振动

欧拉-伯努利梁横向振动

建模

欧拉-伯努利梁满足一些基本假设:
1. 长细比大于10
2. 忽略梁的剪切变形以及截面绕中性轴转动惯量的影响

对于等截面等密度的欧拉-伯努利梁,弹性模型为E,截面惯性矩为I,线密度为ρ,长度为 l ,其振动方程为

EI4yx4+ρ2yt2=0(1)
采用分离变量法求解,设梁具有如下形式的横向固有振动

y(x,t)=Y(x,t)q(x,t)(2)
将上式带入公式(1)中,可得
ρY(x)q¨(t)+EIY(4)(x)q(t)=0(3)
进一步整理可得
EIρY(4)(x)Y(x)=q¨(t)q(t)(4)
该方程左端为 x 的函数,右端为t的函数,且 x t相互独立,因此上式应该等于一个常数,且该常数非负,记为 ω2>=0 ,因此上式可以分离为两个独立的微分方程:
EIρY(4)(x)λ4Y(x)=0q¨(t)+ω2q(t)=0(5)
式中: λ4=ρEIω2 。解上述方程得
{Y(x)=a1cosλx+a2sinλx+a3coshλx+a4sinhλxq(t)=b1cosωt+a2sinωt(6)
对于悬臂梁模型,根据其边界条件(固支端:位移为零,转角为零;自由端:弯矩为零,剪力为零)可得
cosλlcoshλl=1(7)
固有振型函数为
Yi(x)=coshλixcosλix+γi(sinhλixsinλix)(8)
式中:
γi=sinhλilsinλilcoshλilcosλil

欧拉-伯努利梁受迫振动

假设梁受到强迫力 f (分布力)和强迫力矩m(分布力矩),则其横向振动方程为

EI4yx4+ρ2yt2=fmx(9)
根据振型叠加法,位移解可写为
y(x,t)=i=1Yi(x)qi(x)(10)
将其带入式(9)中可得
ρi=1Yi(x)q¨i(t)+EIi=1Y(4)i(x)qi(t)=fmx(11)
相应的初始条件为
y(x,0)=y0(x)=i=1Yi(x)qi(0)y(x,0)t=v0(x)=i=1Yi(x)q˙i(0)(12)
将上式同时乘以 Yj(x) ,并沿全梁积分,利用固有振型正交性得到
Miq¨i(t)+Kiqi(t)=fi(t)(i=1,2,3,...)(13)
式中 Mi Ki 分别为第 i 阶主质量和主刚度,而
fi(t)=t0(fmx)Yi(x)dx(14)
为第 i 阶广义力。对于式(13)作为一个二阶非齐次常微分方程,根据杜哈梅积分公式,其解为
y(x,t)=i=1Yi(x)[qi(0)cosωit+q˙i(0)ωisinωit+t0sinωi(tτ)Miωifi(τ)dτ](15)

问题

  1. 欧拉-伯努利梁的基本假设是忽略剪切变形和转动惯量。然而当固有频率较高时,由于模态较为复杂,不得不考虑剪切变形和转动惯量。因此,欧拉-伯努利梁计算得到的高阶固有频率往往大于真实值,且精度较差。为了克服欧拉-伯努利梁的这个缺点,可以采用Timoshenko梁模型。
  2. 考察方程(1),根据方程(1)得到了振型的表达形式为(6),显然(6)是无穷阶连续函数,因此对应的剪力和弯矩也是无穷阶连续。然而对于集中力受迫振动,考察式(11),左端对于 x 是无穷阶连续,而集中力f(x,t)=f0(t)δ(xxC)是关于 x 的 狄拉克函数,不连续也不可导,因此对于强迫力为集中力,方程(9)两边并不匹配,后面通过乘以振型函数后积分掩饰了这一点。根据集中力求解结果,梁的剪力分布的趋势与理论相同,但是欧拉-伯努利梁的结果是用连续函数去逼近非连续的理论值。如果想要完全等于理论结果,不能采用集中力,外力应满足如下条件:f关于全梁连续且可导, m <script type="math/tex" id="MathJax-Element-35">m</script>关于全梁连续且二阶可导
  • 16
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值