MASKRCNN 识别车辆刮痕

最近迷上了MASKRCNN ,除了电脑训练不给力外,训练出的结果还是可以将就看的。必定训练的数据集还是太少。

mask rcnn在计算机视觉中用于实例分割效果非常震惊,如果数据集足够大的话。计算机视觉可以帮住检测图像中的目标物,并使用

BOX圈出,MASK RCNN还可以将识别到的目标物用mask标记出来,可以达到像素级别的识别。

点击查看原图GIF
在这里插入图片描述

在这里插入图片描述

这篇文章的目的是构建一个自定义的 Mask R-CNN 模型,该模型可以检测汽车上的损坏区域(参见上面的图像示例)。这种模型的基本原理是,如果用户可以上传图片并且可以评估它们的损失,保险公司可以使用它来更快地处理索赔。如果贷款人正在承保汽车贷款,特别是二手车,也可以使用此模型。

目录
如何构建用于汽车损坏检测的 Mask R-CNN
收集数据
注释数据
训练模型
验证模型
运行图像模型并进行预测
感谢
源码及使用
如何构建用于汽车损坏检测的 Mask R-CNN 模型

为了构建自定义 Mask R-CNN,我们将利用 Matterport Github ,地址 https://github.com/matterport/Mask_RCNN

MASKRCNN的搭建具有一定的挑战,请按照GitHub上的说明进行搭建。MASK RCNN 是基于TensorFlow 的python3版本。 还好最终搭建成功Mask R-CNN 。

收集数据
在这个练习中,我从谷歌收集了 66 张受损汽车的图像(50 列火车和 16 幅验证)。查看下面的一些示例。

image2.jpg

注释数据
Mask R-CNN 模型要求用户注释图像并识别损坏区域。我使用的注释工具是 VGG Image Annotator — v 1.0.6。您可以使用此链接 :http://www.robots.ox.ac.uk/~vgg/software/via/via-1.0.6.html 提供的 html 版本 。使用此工具,您可以创建多边形遮罩,如下所示:

1_0xHX4FRHM_12Vd4T9IVuFw.png

创建完所有注释后,您可以下载注释并将其保存为json格式。这里不同于LABELME的是 只生成一个json文本。

训练模型
训练的python源码参考balloon.py修改的。训练中用到了 coco的H5模型。

训练指令

python3 custom_cardamage.py train --dataset=customImages/ --weights=coco

我正在使用 CPU 并在 100个steps 10个epoches需要花费14个小时,建议有条件的用GPU。

custom_cardamage.py

“”"
Mask R-CNN
Train on the toy Balloon dataset and implement color splash effect.

Copyright © 2018 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla


Usage: import the module (see Jupyter notebooks for examples), or run from
the command line as such:

# Train a new model starting from pre-trained COCO weights
python3 balloon.py train --dataset=/path/to/balloon/dataset --weights=coco

# Resume training a model that you had trained earlier
python3 balloon.py train --dataset=/path/to/balloon/dataset --weights=last

# Train a new model starting from ImageNet weights
python3 balloon.py train --dataset=/path/to/balloon/dataset --weights=imagenet

# Apply color splash to an image
python3 balloon.py splash --weights=/path/to/weights/file.h5 --image=<URL or path to file>

# Apply color splash to video using the last weights you trained
python3 balloon.py splash --weights=last --video=<URL or path to file>

“”"

import os
import sys
import json
import datetime
import numpy as np
import skimage.draw
import cv2
from mrcnn import visualize
from mrcnn.visualize import display_instances

import matplotlib.pyplot as plt

Root directory of the project

ROOT_DIR = os.getcwd()

Import Mask RCNN

sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn.config import Config
from mrcnn import model as modellib, utils

Path to trained weights file

COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, “mask_rcnn_coco.h5”)

Directory to save logs and model checkpoints, if not provided

through the command line argument --logs

DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, “logs”)

############################################################

Configurations

############################################################

class CustomConfig(Config):
“”“Configuration for training on the toy dataset.
Derives from the base Config class and overrides some values.
“””
# Give the configuration a recognizable name
NAME = “damage”

# We use a GPU with 12GB memory, which can fit two images.
# Adjust down if you use a smaller GPU.
IMAGES_PER_GPU = 1
#BACKBONE = "resnet50"
# Number of classes (including background)
NUM_CLASSES = 1 + 1  # Background + toy

# Number of training steps per epoch
STEPS_PER_EPOCH = 100

# Skip detections with < 90% confidence
DETECTION_MIN_CONFIDENCE = 0.9

############################################################

Dataset

############################################################

class CustomDataset(utils.Dataset):

def load_custom(self, dataset_dir, subset):
    """Load a subset of the Balloon dataset.
    dataset_dir: Root directory of the dataset.
    subset: Subset to load: train or val
    """
    # Add classes. We have only one class to add.
    self.add_class("damage", 1, "damage")

    # Train or validation dataset?
    assert subset in ["train", "val"]
    dataset_dir = os.path.join(dataset_dir, subset)

    # Load annotations
    # VGG Image Annotator saves each image in the form:
    # { 'filename': '28503151_5b5b7ec140_b.jpg',
    #   'regions': {
    #       '0': {
    #           'region_attributes': {},
    #           'shape_attributes': {
    #               'all_points_x': [...],
    #               'all_points_y': [...],
    #               'name': 'polygon'}},
    #       ... more regions ...
    #   },
    #   'size': 100202
    # }
    # We mostly care about the x and y coordinates of each region
    annotations1 = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))
    # print(annotations1)
    annotations = list(annotations1.values())  # don't need the dict keys

    # The VIA tool saves images in the JSON even if they don't have any
    # annotations. Skip unannotated images.
    annotations = [a for a in annotations if a['regions']]

    # Add images
    for a in annotations:
        # print(a)
        # Get the x, y coordinaets of points of the polygons that make up
        # the outline of each object instance. There are stores in the
        # shape_attributes (see json format above)
        polygons = [r['shape_attributes'] for r in a['regions'].values()]

        # load_mask() needs the image size to convert polygons to masks.
        # Unfortunately, VIA doesn't include it in JSON, so we must read
        # the image. This is only managable since the dataset is tiny.
        image_path = os.path.join(dataset_dir, a['filename'])
        image = skimage.io.imread(image_path)
        height, width = image.shape[:2]

        self.add_image(
            "damage",  ## for a single class just add the name here
            image_id=a['filename'],  # use file name as a unique image id
            path=image_path,
            width=width, height=height,
            polygons=polygons)

def load_mask(self, image_id):
    """Generate instance masks for an image.
   Returns:
    masks: A bool array of shape [height, width, instance count] with
        one mask per instance.
    class_ids: a 1D array of class IDs of the instance masks.
    """
    # If not a balloon dataset image, delegate to parent class.
    image_info = self.image_info[image_id]
    if image_info["source"] != "damage":
        return super(self.__class__, self).load_mask(image_id)

    # Convert polygons to a bitmap mask of shape
    # [height, width, instance_count]
    info = self.image_info[image_id]
    mask = np.zeros([info["height"], info["width"], len(info["polygons"])],
                    dtype=np.uint8)
    for i, p in enumerate(info["polygons"]):
        # Get indexes of pixels inside the polygon and set them to 1
        rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x'])
        mask[rr, cc, i] = 1

    # Return mask, and array of class IDs of each instance. Since we have
    # one class ID only, we return an array of 1s
    return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32)

def image_reference(self, image_id):
    """Return the path of the image."""
    info = self.image_info[image_id]
    if info["source"] == "damage":
        return info["path"]
    else:
        super(self.__class__, self).image_reference(image_id)

def train(model):
“”“Train the model.”""
# Training dataset.
dataset_train = CustomDataset()
dataset_train.load_custom(args.dataset, “train”)
dataset_train.prepare()

# Validation dataset
dataset_val = CustomDataset()
dataset_val.load_custom(args.dataset, "val")
dataset_val.prepare()

# *** This training schedule is an example. Update to your needs ***
# Since we're using a very small dataset, and starting from
# COCO trained weights, we don't need to train too long. Also,
# no need to train all layers, just the heads should do it.
print("Training network heads")
model.train(dataset_train, dataset_val,
            learning_rate=config.LEARNING_RATE,
            epochs=10,
            layers='heads')

def color_splash(image, masks,N):
“”"Apply color splash effect.
image: RGB image [height, width, 3]
mask: instance segmentation mask [height, width, instance count]

Returns result image.
"""
# Make a grayscale copy of the image. The grayscale copy still
# has 3 RGB channels, though.
gray = skimage.color.gray2rgb(skimage.color.rgb2gray(image)) * 255
# We're treating all instances as one, so collapse the mask into one layer
mask = (np.sum(masks, -1, keepdims=True) >= 1)


#rgb red color
color = (1.0,0.0,0.0)

'''
# Copy color pixels from the original color image where mask is set
if mask.shape[0] > 0:
    splash = np.where(mask, (128,0,0), gray).astype(np.uint8)
    
else:
    splash = gray
    '''
masked_image = image.astype(np.uint32).copy()
for i in range(N):
    mask = masks[:, :, i]
    splash = visualize.apply_mask(gray, mask,color)
#splash.astype(np.uint8)
return splash

def detect_and_color_splash(model, image_path=None, video_path=None):
assert image_path or video_path

# Image or video?
if image_path:
    # Run model detection and generate the color splash effect
    print("Running on {}".format(args.image))
    # Read image
    image = skimage.io.imread(args.image)
    # Detect objects
    r = model.detect([image], verbose=1)[0]
     # Number of instances
    N = r['rois'].shape[0]
    print("\n*** instances to display :",N)
    if N > 0:
        # Color splash
        splash = color_splash(image, r['masks'],N)
        # Save output
        file_name = "result/splash_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now())
        skimage.io.imsave(file_name, splash)
        print("Saved to ", file_name)
elif video_path:
    import cv2
    # Video capture
    vcapture = cv2.VideoCapture(video_path)
    width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = vcapture.get(cv2.CAP_PROP_FPS)

    # Define codec and create video writer
    file_name = "splash_{:%Y%m%dT%H%M%S}.avi".format(datetime.datetime.now())
    vwriter = cv2.VideoWriter(file_name,
                              cv2.VideoWriter_fourcc(*'MJPG'),
                              fps, (width, height))

    count = 0
    success = True
    while success:
        print("frame: ", count)
        # Read next image
        success, image = vcapture.read()
        if success:
            # OpenCV returns images as BGR, convert to RGB
            image = image[..., ::-1]
            # Detect objects
            r = model.detect([image], verbose=0)[0]
            # Color splash
            splash = color_splash(image, r['masks'])
            # RGB -> BGR to save image to video
            splash = splash[..., ::-1]
            # Add image to video writer
            vwriter.write(splash)
            count += 1
    vwriter.release()
    print("Saved to ", file_name)

############################################################

Training

############################################################

if name == ‘main’:
import argparse

# Parse command line arguments
parser = argparse.ArgumentParser(
    description='Train Mask R-CNN to detect custom class.')
parser.add_argument("command",
                    metavar="<command>",
                    help="'train' or 'splash'")
parser.add_argument('--dataset', required=False,
                    metavar="/path/to/custom/dataset/",
                    help='Directory of the custom dataset')
parser.add_argument('--weights', required=True,
                    metavar="/path/to/weights.h5",
                    help="Path to weights .h5 file or 'coco'")
parser.add_argument('--logs', required=False,
                    default=DEFAULT_LOGS_DIR,
                    metavar="/path/to/logs/",
                    help='Logs and checkpoints directory (default=logs/)')
parser.add_argument('--image', required=False,
                    metavar="path or URL to image",
                    help='Image to apply the color splash effect on')
parser.add_argument('--video', required=False,
                    metavar="path or URL to video",
                    help='Video to apply the color splash effect on')
args = parser.parse_args()

# Validate arguments
if args.command == "train":
    assert args.dataset, "Argument --dataset is required for training"
elif args.command == "splash":
    assert args.image or args.video,\
           "Provide --image or --video to apply color splash"

print("Weights: ", args.weights)
print("Dataset: ", args.dataset)
print("Logs: ", args.logs)

# Configurations
if args.command == "train":
    config = CustomConfig()
else:
    class InferenceConfig(CustomConfig):
        # Set batch size to 1 since we'll be running inference on
        # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1
    config = InferenceConfig()
config.display()

# Create model
if args.command == "train":
    model = modellib.MaskRCNN(mode="training", config=config,
                              model_dir=args.logs)
else:
    model = modellib.MaskRCNN(mode="inference", config=config,
                              model_dir=args.logs)

# Select weights file to load
if args.weights.lower() == "coco":
    weights_path = COCO_WEIGHTS_PATH
    # Download weights file
    if not os.path.exists(weights_path):
        utils.download_trained_weights(weights_path)
elif args.weights.lower() == "last":
    # Find last trained weights
    weights_path = model.find_last()[1]
elif args.weights.lower() == "imagenet":
    # Start from ImageNet trained weights
    weights_path = model.get_imagenet_weights()
else:
    weights_path = args.weights

# Load weights
print("Loading weights ", weights_path)
if args.weights.lower() == "coco":
    # Exclude the last layers because they require a matching
    # number of classes
    model.load_weights(weights_path, by_name=True, exclude=[
        "mrcnn_class_logits", "mrcnn_bbox_fc",
        "mrcnn_bbox", "mrcnn_mask"])
else:
    model.load_weights(weights_path, by_name=True)

# Train or evaluate
if args.command == "train":
    train(model)
elif args.command == "splash":
    detect_and_color_splash(model, image_path=args.image,
                            video_path=args.video)
else:
    print("'{}' is not recognized. "
          "Use 'train' or 'splash'".format(args.command))

在图像上运行模型并进行预测
custom_train.py 中的color_spash内容我们做了修改,所有的实例instance 都用同一种颜色mask处理。

预测指令:

python3 custom_cardamage.py splash --image=customImages/test/bitauto.jpg --weights=mask_rcnn_damage_0010.h5

另外使用ffmeg将图片转换成GIF 。

ffmpeg  -r 2 -i %d.png  11.gif -y

-r 2 一秒2帧

-y 覆盖原来

在这里插入图片描述

预测有一定的误差和丢失。也许可以通过加大训练集增加准确率。

感谢
非常感谢 Matterport 在GitHub上开放的源码,同时也感谢priya 分享的详细博客https://www.analyticsvidhya.com/blog/2018/07/building-mask-r-cnn-model-detecting-damage-cars-python/ 。

源码及使用
我的github

https://github.com/horo2016/MASKRCNN-damagecar

请先下载 Matterport 的MASKRCNN并正确安装,同时下载mask_rcnn_coco.h5 将本分支的customImage和custom_cardamage.py放到 MASKRCNN的根目录并解压。

训练
python3 custom_cardamage.py train --dataset=customImages/ --weights=coco

预测
python3 custom_cardamage.py splash --image=customImages/test/bitauto.jpg --weights=mask_rcnn_damage_0010.h5

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 10
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值