狄利克雷过程(Dirichlet Process)

0. 引入

现观察得到两个样本 θ1,θ2 ,来推测它们可能来自的分布:

  • 假设来自于连续型概率密度函数, θ1,θ2H(θ)
    • θ1,θ2 相等的概率为 0, p(θ1=θ2)=0
    • 概率为 0,不代表不可能发生,仍有发生的可能,只不过概率的测度为 0;(详见测度论相关知识)
    • 纵然二者仍有可能相等,但因其概率测度为 0,实际上我们也只能视二者为不同的值;
  • 假设来自于一种离散型概率质量函数,我们仍希望其具有与连续型分布函数相类似的形式,记此时的离散分布为 G ,想要其与连续型概率密度函数形式相近,又不至于像连续型那样任意产生的两个样本几乎可以视为不相等,则需要 GDP(α,H),这就是狄利克雷过程(当然严格的 DP 不要求 H 一定为连续,也可以为离散,称其为,base measure);
    • α>0 的 scalar,控制 G 的离散程度,其值越小与不离散,
      • 极限思维法,什么情况下,G 会达到最离散的状态呢,即只有一个值( α=0 ),使用一个值去代表一个分布;
      • α= G=H

      1. DP

      一般而言,样本从一个分布中得到, xP(X|θ) ,也即我们可从一个分布中得到样本,不管这是几维的样本,总之是一个值;

      但对于 DP 而言, GDP(α,H) 却是从分布得分布,产生的不是一个值,而是整个分布,从 base measure 产生一个 random discrete probability measure,最终产生的分布仍然是随机的,也即每次 draw(抽样)得到的都不一样。

      那么这样的 G 需要满足什么样的特性呢,对任意一次 draw 得到的 G 做任意次的划分( α1,,αd ),则 G(α1,,αd)Dir() (需要满足狄利克雷分布)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值