所有学线代的人都必须透彻理解和应用正交变换。
正交变换图形上最直观的作用是:一巴掌把歪七扭八的图形打正,如下:
而图形立正后,表达式也随之立正, x i x j {x_{i}x_{j}} xixj群魔退散,平方项真身显现,这样有什么好处呢?
考研主要涉及下列方面:
1.椭圆长轴、短轴一目了然(后有考研真题案例)
2.巧解多元函数条件极值
3.构造卡方分布(数一/三了解)
4…自行补充
第一个是比较好理解,第二个次之,第三个较难。这里我从易到难,用题目来举例。
例题一:
求椭圆 2 x 2 + 4 x y + 5 y 2 = 1 {2x^{2} +4xy +5y^{2}=1} 2x2+4xy+5y2=1的面积。
常规思路:
在 2 x 2 + 4 x y + 5 y 2 = 1 {2x^{2} +4xy +5y^{2}=1} 2x2+4xy+5y2=1的条件下,通过求 x 2 + y 2 {x^{2} +y^{2}} x2+y2的最大值和最小值,来找长半轴和短半轴,再用椭圆面积公式 S = π a b {S=\pi ab} S=πab计算。
正交变换化标准型思路:
直接找出长短轴,再套椭圆面积公式,过程如下:
2 x 2 + 4 x y + 5 y 2 = 1 {2x^{2} +4xy +5y^{2}=1} 2x2+4xy+5y2=1,改写成
X T ( 2 2 2 5 ) X = 1 X^{T} {\begin{pmatrix} 2&2\\ 2&5 \end{pmatrix}} X=1 XT(2225)X=1
再求正交变换 X = Q Y X=QY X=QY中的 Q Q Q,进入标准化的无脑模式
① 求特征值和特征向量
∣ λ E − A ∣ = 0 ⇒ λ 1 = 6 , λ 2 = 1 {\left| \lambda E - A \right|=0\Rightarrow \lambda_{1}=6,\lambda_{2}=1} ∣λE−A∣=0⇒λ1=6,λ2=1
( λ i E − A ) α = 0 ⇒ α 1 = ( 1 , 2 ) T , α 2 = ( − 2 , 1 ) T {( \lambda_{i} E - A) \alpha=0\Rightarrow \alpha_{1}=(1,2)^{T},\alpha_{2}=(-2,1)^{T}} (λiE−A)α=0⇒α1=(1,2)T,α2=(−2,1)T
② 特征向量正交化、单位化
α 1 , α 2 {\alpha_{1},\alpha_{2}} α1,α2,单位化: α 1 ′ = α 1 ∣ α 1 ∣ , α 2 ′ = α 2 ∣ α 2 ∣ {\alpha'_{1}=\frac{\alpha_{1}}{\left| \alpha_{1} \right|},\alpha'_{2}=\frac{\alpha_{2}}{\left| \alpha_{2} \right|}} α1′=∣α1∣α1,α2′=∣α2∣α2
Q = ( α 1 ′ , α 2 ′ ) {Q=(\alpha'_{1},\alpha'_{2})} Q=(α1′,α2′)
③ 化标准型
f = X T A X 在 {f=X^{T}AX}在 f=XTAX在 X = Q Y X=QY X=QY作用下,化为 f = y T Q T A Q y = 6 y 1 2 + y 2 2 {f=y^{T}Q^{T}AQy=6y_{1}^{2} +y_{2}^{2}} f=yTQTAQy=6y12+y22
∴椭圆表达式化为: 6 y 1 2 + y 2 2 = 1 ⇒ y 1 2 ( 1 6 ) 2 + y 2 2 ( 1 ) 2 = 1 {6y_{1}^{2} +y_{2}^{2}=1\Rightarrow\frac{y_{1}^{2} }{\left(\frac{1}{\sqrt{6}} \right)^{2}} +\frac{y_{2}^{2} }{\left(1 \right)^{2}} =1} 6y12+y22=1⇒(61)2y12+(1)2y22=1
∴ a = 1 , b = 1 6 {a=1,b=\frac{1}{\sqrt{6}}} a=1,b=61,∴有 S = π a b ⇒ S = 1 6 π {S=\pi ab\Rightarrow S=\frac{1}{\sqrt{6}}\pi} S=πab⇒S=61π
例题二:
设 f ( x 1 , x 2 , x 3 ) = X T A X = 3 x 1 2 + 6 x 2 2 + 3 x 3 2 − 4 x 1 x 2 − 8 x 1 x 3 − 4 x 2 x 3 {f(x_{1},x_{2},x_{3})=X^{T}AX=3x_{1}^{2} +6x_{2}^{2} +3x_{3}^{2} -4x_{1}x_{2} -8x_{1}x_{3} -4x_{2}x_{3}} f(x1,x2,x3)=XTAX=3x12+6x22+3x32−4x1x2−8x1x3−4x2x3,求其在条件 x 1 2 + x 2 2 + x 3 2 = 1 {x_{1}^{2} +x_{2}^{2} +x_{3}^{2}=1} x12+x22+x32=1下的极小值。
解:
①求特征值
A = ( 3 − 2 − 4 − 2 6 − 2 − 4 − 2 3 ) {A=} {\begin{pmatrix} 3&-2&-4 \\ -2&6&-2\\ -4&-2&3\\ \end{pmatrix}} A=
3−2−4−26−2−4−23
∴ ∣ λ E − A ∣ = ( λ − 7 ) 2 ( λ + 2 ) {\left| \lambda E - A \right|=(\lambda-7)^{2}(\lambda + 2)} ∣λE−A∣=(λ−7)2(λ+2), ∴ λ 1 = λ 2 = 7 {\lambda_{1}=\lambda_{2}=7} λ1=λ2=7, λ 3 = − 2 {\lambda_{3}=-2} λ3=−2
②利用正交矩阵标准化
由于实对称阵一定能对角化,故一定存在正交阵Q使
X T A X → Y T Q T A Q Y = Y T ( 7 7 − 2 ) Y {X^{T}AX\rightarrow Y^{T}Q^{T}AQY=Y^{T}}{
{\begin{pmatrix} 7& & \\ &7& \\ & &-2\\ \end{pmatrix}} Y} XTAX→YTQTAQY=YT
77−2
Y= 7 y 1 2 + 7 y 2 2 − 2 y 3 2 {7y_{1}^{2} +7y_{2}^{2} -2y_{3}^{2}} 7y12+7y22