最简单的健身数据分析流程,零基础小白一看就懂!

每天都泡在健身房,还是一点没瘦?肌肉也没变多?这是怎么回事!

不要以为你健身了,就一定会瘦!我们要通过观察健身数据,分析各种数据,找出根本原因!

在这里插入图片描述
今天,我们将为您带来一篇利用Qlik Sense及相关功能对Peloton数据实现进阶分析的精彩文章,带您领略数据分析的实用性趣味~

我是Peloton的忠实用户,它各方面的表现一直都很棒。但是它有一个缺憾:虽然基本的类别统计指标(class-level statistics),但缺乏能力去跟踪任何形式的整体变动、计量总数,更没有任何能随时间推移而变化的视图。

此时,我想到了Qlik,以及它友好且强大的数据分析功能。

在这里插入图片描述
我根据需要自主创建了一个能满足更多需要的Peloton数据分析程序(如下图)。

在这里插入图片描述qlik仪表盘

这就是我用于分析Peloton统计数据的仪表盘界面,这个界面是在Qlik Sense内实现的。结果一目了然,非常直观。

01、通过Peloton API,我们获得了大量可用于分析的数据。通过Qlik的一个简单公式,我们就可以顺利解开Unix时间戳之谜,并按“日期(Day)”来区分不同时段锻炼情况的差异性。

在这里插入图片描述每日热量消耗直方图(横轴:date)

如上,我创建了一个可视化图表,以显示我在某段周期训练的进展。以日期为横坐标,纵坐标则为消耗的热量。您可以看到:当燃烧的卡路里越多,色块就越红,这种效果非常直观。

02、除此之外,我还想看,对教练的偏好是否等同于更好的锻炼效果。

在这里插入图片描述课程热量平均消耗图

03、现在,数据存在某些偏向,因为它是根据课程耗时的平均值来计算的。让我们进一步看看下面这个比较图表:
在这里插入图片描述课时热量平均消耗直方图

我还想知道,我是如何分配自己的训练时间的?
在这里插入图片描述课时分布图

04、现在,我还可以看到我在Peloton自行车及其他课程上投入的工作总量。那么,我怎么知道我在哪个时段有着最好的锻炼效果?当我为锻炼投入的精力越多,是不是就会有更好的成效呢?

在这里插入图片描述每日热量消耗直方图(横轴:weekday)

点击获取相关demo ☜☜☜☜☜☜

可以看到,我在周五投入最多,总耗能水平也是最高的,呈现红色,当天的平均耗能水平也是最高的。而周六则是最懒惰的。

这下知道,自己的健身数据如何了吧?接下来的运动,要一起加油哦!

===相关推荐阅读

1、将Qlik集成到课堂中:您的学生将创造什么?

2、Qlik案例:Qlik如何帮助我们转变智能医疗保健?

3、Qlik应用:跨工厂/跨车间的数据关联分析,提高企业成品率!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值