大数据解决方案
文章平均质量分 75
yuyuyuyo
这个作者很懒,什么都没留下…
展开
-
2022年大数据十大发展趋势
研究表明,大数据分析的一些发展趋势将为企业的未来发展做好准备。大数据分析如今成为政府部门和私营企业以及医疗机构抗击新冠疫情的重要资源。这在很大程度上要归功于云计算软件的发展,很多企业现在可以实时跟踪和分析大量业务数据,并相应地对其业务流程进行必要的调整。1、人工智能将继续改进,但人类仍将发挥至关重要的作用今年早些时候,调研机构Gartner公司表示,“更智能、更负责任、可扩展的人工智能将实现更好的学习算法、可解释的系统和更短的价值实现时间。企业将开始对人工智能系统提出更多的要求,他们需要弄清楚如转载 2021-09-26 11:07:21 · 2195 阅读 · 0 评论 -
生产质量分析能帮助企业解决哪些问题?
生产质量分析主要是为了帮助企业更快更准确的发现产品的质量问题,找到影响质量的根本原因,改善原因,提高企业产品良率。下面我们看看慧都科技的质量分析到底能帮助企业解决哪些问题?慧都科技定制开发的生产质量分析模型,主要是面向产品从原材料到成品过程,实现产品整个生命流程质量信息的集成管理,对产品质量和过程质量进行实时监控和分析。现场监控软件可以参考:电子看板系统。精确质量信息分析、优化改善生产流程是慧都科技质量分析的第一思想。生产质量分析的方案架构:1. 基础信息管理系统对基础信息的管理包原创 2021-09-18 11:49:40 · 288 阅读 · 0 评论 -
制造业如何实现设备故障分析与预测性维护?
在工业制造界,企业极不希望发生停机事故。因为,一小时的停机时间会使企业损失上百万人民币甚至更多。除了资金方面的损失之外,停机还意味着,当持续发生设备故障时,对员工的激励难度则会变大。因此,在企业的日常业务运营中,预测性维护就显得十分重要。设备故障诊断是预测性维护技术体系的重要组成部分,通过选取合适的状态监测传感器,对设备各个机械部位的状态信号连续、并行地进行采集、分析,从而提前做好故障预防工作。那么,想要实现预测性维护,需要采取哪些设备故障分析方法呢?一、设备数据采集及分析设备故障分析方法的第一原创 2021-09-16 16:15:11 · 1799 阅读 · 0 评论 -
制造业如何做好生产经营分析?
什么是生产运营:生产运营是指企业投入一定的资源,经过一系列或者多种形式的转换,由此增加附加价值,并产生新的效益,最后以成品的形式产出并提供给社会的过程。制造型企业发展的本质,就是提高生产效率和质量。在实际生产过程中,生产流程长,工艺复杂,生产环节众多,如何保证生产质量,并提升生产效率,也成为了当下制造型企业管理的难点。生产运营分析的难点:1、随着智能制造的普及,越来越多的企业意识到单靠人力现场的督查,已经无法满足理想的控制状态,所以很多企业引入了智能制造设备,例如mes、erp、aps等系统原创 2021-09-16 09:49:05 · 778 阅读 · 0 评论 -
大数据干货,1个案例讲清楚精准营销!
精准营销概述:精准营销是指企业通过定量和定性相结合的方法,对目标市场的不同消费者进行细致分析,并根据他们不同的消费心理和行为特征,采用有针对性的现代技术、方法和指向明确的策略,从而实现对目标市场不同消费者群体强有效性、高投资回报的营销沟通。精准营销最大的优点在于“精准”,即在市场细分的基础上,对不同消费者进行细致分析,确定目标对象。精准营销的主要特点有以下几点。• 精准的客户定位是营销策略的基础。• 精准营销能提供高效、投资高回报的个性化沟通。过去营销活动面对的是大众,目标不够明确,沟通效果原创 2021-09-06 15:15:29 · 4463 阅读 · 0 评论 -
制造业干货,只需3步,快速提高产品良率!
第一步:培养质量管理意识1、自检意识产品质量是制造出来的,设计出来的,而不是检验出来的。生产质量控制的秘诀是:让每个人做好自己的产品。要求员工对自己生产的产品,要自我进行检验,只有自己认为是合格品,才可以流向下道工序或车间,在自检中发现的不合格品,要自已做好标识并把它分开放置。2、互检意识对于上道工序或车间流过来的产品,必须员工不要看都不看,就忽拉拉往下做,要检验认为是合格品,才可以进行生产。对查到上工序或车间的质量问题,要及时反馈。坚决做到不制造不良品,不接收不良品,不传递不良品。原创 2021-09-03 16:24:48 · 2619 阅读 · 0 评论 -
设备故障率高的四大原因及对策分析
您是否总有疑问,为何自己的设备频繁故障?为何自己的设备总是寿命不长?但是对于以上难题却没办法解决。本文将会告诉你,设备故障的原因以及如何解决这个难题。一、生产部门不够重视很多公司的生产部门对设备的故障不很关心,认为设备故障是设备部门的责任,不是生产部门的问题。生产部门只关心产量的提升,而对影响产量、质量极大的设备及其维护可以说是不够重视。而减少设备故障,甚至是接近零故障,仅靠设备部门的努力是很难达成的,需要生产部门的协助才能达成。也就是说生产部门要做一些该做的工作,即清扫、点检、加 油、螺丝的检原创 2021-08-31 16:30:46 · 3343 阅读 · 0 评论 -
工业大数据大有可为,浅谈制造业7大应用场景
工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。本文我们讲就工业大数据在制造企业的应用场景进行逐一梳理。一、加速产品创新客户与工业原创 2021-08-30 15:20:35 · 1563 阅读 · 0 评论 -
制造业如何进行质量数据分析?附教程,内含大量分析图表!
目前很多制造型企业拥有了MES、ERP、SPC等业务系统,获得了大量的数据。然而在跨工厂、跨系统的异构数据中,如何找到生产各个环节的规律和异常,如何获得优化见解,是制造型企业面临的关键挑战。通过数据分析提升产品质量,提高产品合格率、成品率则是企业发展的下一步抓手。一、制造业质量数据分析遇到的难点:1、产品质量缺陷追溯周期长,找寻规律较慢。2、数据跨工厂/跨车间/跨业务系统,只做数据展示,无法关联分析。3、数据不全,数据准确性不稳定,数据分析决策支持功能弱。4、很难发现经验已知之外的影原创 2021-08-26 09:44:16 · 6442 阅读 · 0 评论 -
2021质量管理最新资料包来了,超实用干货,快收藏!
1、ISO知识大总结ISO9000有几个主要的特性,概括起来就是“1个精髓和1个中心、2个基本点;3种特性、4个凡事和4大产品、5大模块、6个文件、8项原则”,把它再简化为“112 344 568”。① 一个精髓:说、写、做一致。② 一个中心:以顾客为中心。③ 两个基本点:顾客满意和持续改进。④ 三个特性:适宜性、充分性、有效性。⑤ 四个凡事:凡事有人负责、凡事有章可循、凡事有据可查、凡事有人监督。⑥ 四大产品:服务、软件、硬件、流程性材料。⑦ 五大模块:(1个总过程,4个大原创 2021-08-25 14:26:13 · 188 阅读 · 0 评论 -
有了ERP和MES,工厂真的就能做好质量管理工作吗?
为了能够快速有效的解决问题,一定是依靠系统。那么传统的ERP和越来越多的企业已经或正计划导入的MES里的质量模块是否靠得住,能否解决目前企业面临的质量分析难题?很遗憾,答案是否定的。ERP和MES软件之中的质量管理模块有以下缺陷:1、质量数据分析功能弱。比如世界排名第一的汽车零部件企业博世,他们使用的ERP系统是SAP,但其中的质量模块只是用来记录数据,后续的分析,还是需要导出来用excel人工统计分析,其效率可想而知。2、界面不友好。请参见SAP质量模块界面。一线员工对这个界面非常反感,很难推原创 2021-08-24 15:50:11 · 280 阅读 · 0 评论 -
质量出问题,如何做好质量分析与总结?看看大家怎么做!
首先我们要明确,质量是生产出来的,而不是检验出来的。要从根源上控制好质量,车间现场管理必不可少,做好质量预测,控制生产质量,才是提升产品品质的根本措施。本文旨在讲述,出了质量问题,我们该如何对产品质量分析,同时给出总结报告,帮助后期生产规避风险。第一:产品质量出现问题,首先定位有关产品所有的有效信息。做好产品信息的整合与归纳,企业必须建立统一的数据采集和管理平台,并能满足一下要求:1、能迅速整合跨车间/跨业务系统/跨部门等数据,即时更新,秒级获取2、打破各业务系统(Mes、SAP、ERP、e原创 2021-08-20 11:44:14 · 812 阅读 · 0 评论 -
企业如何利用工业大数据实现价值,这5个真实案例告诉你!
工业大数据是互联网,大数据和工业产业结合的产物,同时又反作用于产业升级发展。对于制造业而言,了解行业大数据产生的背景,归纳行业大数据的分类和特点,从数据流推动本身价值创造的视角看待、重造工业价值流程,将具有现实意义。生产质量分析及优化—厦顺控股有限公司客户背景:港资企业,总投资10亿美元,全球排名前列的双零铝箔生产商,专注于制造厚度为六至七微米的铝箔产品。中国铝箔材十强企业排名第二。业务需求:“双零铝箔”的生产对技术有高精尖的要求,客户成品率虽处于较高水准,但期待提前布局实现更高水平的突破,提升原创 2021-08-19 17:50:10 · 1372 阅读 · 0 评论 -
深入解读SPC在质量分析中的应用,附demo
统计工具在质量控制和质量分析中有广泛的用途。通过统计工具,能深入分析质量现象,得到很多有用的信息。图表有着很直观的表达能力,能简洁直观的表达意思,也容易得到共识。本文将为大家演示SPC统计工具,在制造业质量分析中的重要应用:一、质量异常追溯分析在对不良品的生产质量分析中,要找到质量异常产品在生产过程中各工序的生产时间、工序的工艺参数,机台记录的备注(生产异常说明)、交接班的备注(生产异常说明)、各工序的评审记录、品检信息、工器具信息、辅材信息、停机记录、班厂量、设备运维状况等信息,并判断是否出现原创 2021-08-18 16:33:06 · 1021 阅读 · 0 评论 -
一文读懂,制造业怎么快速提高生产质量和生产效率?
质量是企业生存的根本,没有质量保障的企业会被市场淘汰,效率是企业追逐利益的保障,高效生产不仅能降低企业成本,而且能给企业创造更多的利益,那么如何才能实现生产质量和效率的提高呢?一、提高生产品质:从原材料把关,严格杜绝不良品入库,并进入生产线。1、采购人员需挑选有资质的供应商,确保所购买的物料,品质达到要求。品管人员协助采购督促供应商提高品质。物料到货后,品管需严加把关。合格品方可入库。2、物料的储存在品质管理中同样很重要,因搬运、储存不当而造成物料的不良时有发生。所有仓管人员一定须按照重下轻上的原创 2021-08-16 17:43:41 · 1039 阅读 · 0 评论 -
解读质量分析的七大误区及解决对策
随着市场竞争的加剧,大力提升产品质量,对质量分析,也逐渐被企业认识、接受、学习、采用。质量分析涉及的数据、部门众多,在分析过程中存在各种问题,本文旨在对质量分析的误区进行分析,以及帮助有关人员正确认识标准,从而更加有效地建立、保持和运行质量管理体系。误区一:依赖于事后检验,不主动进行生产质量分析,从而对质量进行预测。当下很多制造型企业还保留着传统的质量观念,强调事后检验把关,就是说,出现质量问题的产品不出厂。这种方式在质量管理过程中其实是非常被动的,缺陷产品已然产生,生产成本已然浪费,面对大批量的产原创 2021-08-13 11:32:48 · 231 阅读 · 0 评论 -
产品质量异常的正确处理流程
在生产过程中虽然有详细的生产说明书作为参考,但还是会经常发生产品质量异常的现象,而且它对生产效率及质量的影响极大,一线班组长对产品质量异常进行及时有效的确认、分析、处理和追查,是提升班组生产效率、生产良率和产品质量的关键,那么如何进行产品质量异常处理呢?一、生产质量分析系统,快速定位引起产品质量的根本原因合格的生产质量分析系统,必须具备以下几个特点:(1)快速整合生产全量数据,即时获取生产全量数据,质量数据实时动态更新,秒级响应数据需求;(2)各类数据关联分析,打通人机料法环数据,数据无遗漏原创 2021-08-12 16:33:39 · 2028 阅读 · 0 评论 -
制造业想解决产品质量问题,请做好这10点!
质量管理是企业取得成功的根本,在制造业中,管理层们特别头疼质量质量,因为总会遇到各种各样的问题,比如:生产效率低,良率低,生产周期长等等的一系列问题。其实解决生产质量问题没那么复杂,做好细节,从以下10个方面入手,从源头控制好产品质量。1、质量是生产出来的,不是检验出来的。有问题要在第一时间解决,不要等到工人做完了或等到最终检验时才发现,这样太晚了。在每一个环节或每一道工序上实施和执行严格的进料检验和制程过程中的质量控制。这其中包括在生产线上每一种零部件和材料的加工处理。请注意,第三方检验公转载 2021-08-11 15:23:25 · 356 阅读 · 0 评论 -
盘点2021年10个顶级数据分析软件,及优缺点对比
1、Tableau公司关键见解:即使在市场领导者中,Tableau公司也是数据分析软件市场上的顶级供应商。该公司于2019年被Salesforce公司收购。该公司的数据分析平台以收集多个数据输入而闻名,允许用户将它们组合在一起,然后提供仪表板显示来增强可视数据挖掘。此外,数据可以被安排和重新安排,并相对容易地创建层次结构。重要的是,所有这些高级数据操作都可以由没有数据科学背景的员工完成。并且Tableau平台的功能足够强大,足以为用户提供数据科学教育。优点:•Tableau因其数据可视化原创 2021-08-11 14:25:22 · 7118 阅读 · 2 评论 -
工业大数据改变制造业的6种方式
工业大数据是互联网,大数据和工业产业结合的产物,同时又反作用于产业升级发展。对于制造业而言,了解行业大数据产生的背景,归纳行业大数据的分类和特点,从数据流推动本身价值创造的视角看待、重造工业价值流程,将具有现实意义。以下将了解制造业是如何利用工业大数据降本增效的:1、能耗异常值分析能耗异常值分析,实现能源集中管理:将企业的水、电、气、热等能源进行集中监控,构建统一集成的能源管理平台,能够主动、及时的发现能源问题,提高能源管理水平。建立能耗异常分析模型,洞察能耗问题:产量用能分析为企业提供了按原创 2021-08-10 14:52:04 · 491 阅读 · 0 评论 -
车间质量问题频发怎么办?如何从根源掐掉源头?
车间质量问题反反复复都是尺寸不良、错漏混、三伤不良......同样的问题重复犯,这是质量管理过程中的一大难点,但到底是什么原因造成的呢?有什么好的方法进行控制呢?小编认为,最重要的问题,就是产生质量问题的根本原因一直无法溯源,从而不能从根本上解决问题,治标不治本。质量问题根源寻找,得从以下几个方面入手:1、要想尽一切办法获取更多的问题信息当产品在客户端发生问题,问题现象和信息很多时候是通过销售转发客户邮件,信息传递到工厂,对于问题信息的获取不完整,不准确,如何来处理?• 要详细记录出现问原创 2021-08-10 11:10:59 · 564 阅读 · 0 评论 -
如何用人机料法环来分析产品质量?
首先什么是产品质量分析?产品质量分析就是对产品的质量水平从影响的各方面进行评价与判断,找出影响产品质量的主要因素,提出改进建议和措施并指导有效实施的工作过程。产品质量分析的作用?1、产品质量分析是对企业质量管理活动最终成果的判定,客观地显示企业质量管理工作的综合水平。2、产品质量分析是质量管理咨询的切入点,可从对最终结果的分析发现各环节的质量问题,以便及时采取调整措施,使质量管理咨询工作做到有的放矢。3、产品质量分析能真正掌握企业的产品质量水平和动态,通过对质量缺陷的调查研究,同国内外同原创 2021-08-09 16:57:25 · 2985 阅读 · 0 评论 -
质量分析工作中常见的8大误区,你一定要注意!
搞好生产质量是制造业一种最经济的手段,搞好质量管理,是制造业最为头疼的事情。车间现场管理是控制质量的有效手段,为了提升制造业的生产质量,不仅要科学进行车间现场管理,更要对质量进行分析。本文旨在盘点质量分析中,常见的误区,帮助大家更好解决生产质量问题。一、质量分析,只关注不好的异常,而未关注好的异常什么是好的异常?当每天都在投诉我们的客户突然间说我们产品质量变好了。这些好的异常,我们也应该去关注他,找到原因及方案,把这些优势固定下来;不好的异常?就是面对客户直接投诉,我们常常关注于重大的客户投诉、原创 2021-08-06 11:31:16 · 248 阅读 · 0 评论 -
如何做好质量分析工作,看完这篇文章我全明白了,分享给你们!
企业推行质量管理的秘诀不在于投入多少资金和人力,而是要根据企业的实际情况来推行符合自身发展的质量管理系统,并且持之以恒地坚持下去,质量管理才能成功。首先,我们必须明确一个信念:质量分析的根本目的是降低产品不良率,提高产品直通率,实现收益最大化,效率最优化。生产质量分析方案:1、统一的数据采集和管理平台打破多个业务系统(SAP、MES、手工台账等)的数据孤岛,将数据集中到一个平台。完善数据采集机制、建立数据标准、提升数据质量。确保数据实时准确慧都工业大数据团队通过传感器、处理器、计算机原创 2021-08-05 15:41:59 · 915 阅读 · 0 评论 -
关于工业大数据,这是最完整的介绍了,附60页PPT
工业大数据团队一直致力于将复杂的数据转为清晰的见解,通过端到端的方案,将更好的满足企业定制化生产的需求,提高企业运营效率。白皮书来自:清华王建民教授:《工业大数据技术与应用白皮书》...原创 2021-08-05 11:03:37 · 1438 阅读 · 0 评论 -
工业大数据技术与应用白皮书
什么是工业大数据:工业大数据的总称,包括企业信息化数据、工业物联网数据,以及外部跨界数据。工业大数据的来源:人和机器是产生工业大数据的主体,由人产生的数据规模的比重逐渐降低,机器数据所占据的比重越来越大。企业内部数据,主要是MES、ERP、PLM等自动化与信息化系统中产生的数据。产业链数据是企业供应链(SCM)和价值链(CRM)上的数据。跨产业链数据,指市场、地理、环境、法律和政府等外部跨界信息和数据。工业大数据的特征:数据模态多样,结构关系复杂,典型高端制造企业数据类型可达原创 2021-08-04 17:09:46 · 482 阅读 · 0 评论 -
产品质量问题频发,如何做好质量分析工作?
目前很多制造型企业开始进行数字化转型,嫁接了很多提高生产效率的设备,比如MES、ERP、SPC等系统。这些数据能帮助企业看到当下正在发什么,比如在制品多少?库存多少?损耗多少?但是不能告诉企业为什么会形成这样的状态,比如,形成这个在制品数量,背后是多少个一线员工在工作?他使用的是什么工艺?他使用了多少库存?而这些,领导也是需要去知道的,但是往往无法得到员工的响应。因此,众多制造型企业在解决产品质量问题时,就会被以下的问题绊住手脚:1、数据分析仍然依赖于财务报表,严重滞后;2、还在用传统的电子原创 2021-08-04 11:28:25 · 309 阅读 · 0 评论 -
制造业的质量管理系统怎么选?
对于一个制造企业来说,质量是企业的生命。在日益竞争激烈的市场环境下,交货快、质量高是企业的核心竞争力。正因如此,借助质量管理系统,优化产品生命周期全过程的质量,提升企业生产质量分析能力,成为制造型企业产业升级必需选择。质量管理系统是什么?质量管理系统是以生产计划为主线,对企业制造的各种资源进行统一的计划和控制,实现对企业的生产资源有效整合,包括生产原材料、采购、设备、供应商等多个功能模块,为各制造业企业解决管理瓶颈,包括为企业提供简化流程,降低成本和提供利润所需的控制力和洞察力等功能。如何选择合原创 2021-08-03 14:37:46 · 225 阅读 · 0 评论 -
解决制造业质量数据分析难题,3个步骤轻松搞定!
在制造业中,部分企业为了实现数字化转型,嫁接了大量的智能制造设备,诸如MES、ERP、SAP等。在实际生产过程中,每天产生大量的生产数据,这些海量数据被保存在设备中、PC电脑中、设备自带的工控机中等等。大数据时代下,数据最有价值,那如何对质量数据进行有效整理及分析呢,可以从以下方面进行:1、采集数据要齐全生产质量分析平台,快速整合生产全量数据,即时获取影响质量的全量数据,建立统一的质量数据平台。质量数据,主要包括工件的质量数据,也就是涉及到质量的所有几何数据。目前制造业产品生产过程流程控制越原创 2021-08-02 15:45:02 · 601 阅读 · 0 评论 -
一文走进大数据可视化,近期最完整资料整理
什么是大数据可视化:数据可视化是将数据以图形化的方式来表示,代替以往的数字方式呈现,便于人们更直接的了解数据。可以帮助人们迅速明白个别数据的重要性,理解数据背后的含义。并且,通过交互式数据(通过随意点击数据)可视化,向下钻取以探索细节,更容易让人找准数据规律,发现数据异常值,这是人们实现决策智能化的第一步。大数据可视化的重要价值:1、更快的带来见解数据以各种图表的形式展现出来(数据可视化),便于轻松发现数据规律,快速发现异常值。这有有利于更快的了解业务的表现,和正在发生的问题及风险。使得原创 2021-07-30 11:53:49 · 922 阅读 · 0 评论 -
16个大数据常见案例分享,看完别说还不懂大数据!
当下,大数据几乎是每个IT人都在谈论的一个词汇。大数据对于行业的用户也越来越重要,掌握了核心数据,不单单可以进行智能化决策,还能从激烈的竞争环境中脱颖而出。大数据在日常的应用也越来越广泛,尤其以企业为主,企业成为大数据应用的主题,大数据逐渐改变企业的运作方式,并从中受益,本文将以大数据应用案例为主,带你走进大数据的世界。一、制造业的设备故障预测,降低生产成本设备故障一般是指设备失去或降低其规定功能的事件或现象,表现为设备生产运行异常,指设备的某些零件失去原有的精度或性能,使设备不能正常运行、技术原创 2021-07-28 15:21:54 · 19009 阅读 · 0 评论 -
大数据分析应用领域之预测性分析
什么是大数据预测:大数据的本质是解决问题,大数据的核心价值就在于预测,而企业经营的核心也是基于预测而做出正确判断。大数据预测让分析从“面向已经发生的过去”转向“面向即将发生的未来”是大数据与传统数据分析的最大不同。大数据预测所得出的结果不仅仅得到处理现实业务简单、客观的结论,更能用于帮助企业经营决策,收集起来的资料还可以被规划,引导开发更大的消费力量。大数据预测的基本特征:1、实样而非抽样在小数据时代,由于缺乏获取全体样本的手段,人们发明了“随机调研数据”的方法。理论上,抽取样本越随机,原创 2021-07-28 10:38:26 · 3063 阅读 · 0 评论 -
大数据如何对大型设备进行故障预测及健康管理的?
在制造业生产线上,工业生产设备都会受到持续的振动和冲击,这导致设备材料和零件的磨损老化,从而导致工业设备容易产生故障,而当人们意识到故障时,可能已经产生了很多不良品,甚至整个工业设备已经奔溃停机,从而造成巨大的损失。如果能在故障发生之前进行故障预测,提前维修更换即将出现问题的零部件,这样就可以提高工业设备的寿命以及避免某个设备突然出现故障对整个工业生产带来严重的影响。随着工业4.0的到来,智能工厂的工业设备都配上了各种感应器,采集其振动、温度、电流、电压等数据显得轻而易举,通过分析这些实时的传感数据,对原创 2021-07-27 14:23:12 · 1919 阅读 · 0 评论 -
10年质量管理经验过来人告诉你,车间质量管理这样做才有用!
聊这个话题前,首先要明确一个观点,产品质量是做出来的,而不是查出来的。基于这个前提,我们来梳理一下,如何做好车间质量管理。当下,制造业的竞争越来越激烈,生产的产品种类越来越多,客户要求的交货周期越来越短,对产品质量也是越来越重视。车间现场管理,生产过程控制的压力也越来越大。要想做好质量管理,就要从源头控制生产过程,提升产品质量。本文将从影响质量的5个重要因素着手,谈谈车间质量管理那些事?一、对人员的管理就是指在现场的所有人员,包括主管、生产一线员工、司机、搬运工等一切存在的人。对员工的管理,原创 2021-07-21 14:46:47 · 2134 阅读 · 0 评论 -
一文读懂,工业大数据平台为何对企业如此重要?
工业大数据是互联网、大数据和工业产业结合的产物,由于数据的多样与复杂,使得丰富的数据资源并没有得到充分的利用。随着企业增长的驱动力已经逐渐从IT向DT演进,制造企业需要改进其数据分析与处理的方式,实现从粗放式运营到精细化运营的转变,目前制造业数据分析存在哪些问题呢?下面我将从以下几点展开论述。众多制造业数据分析面临的难题:1、工厂各业务部门数据庞大,缺乏整合和有效利用。“数据孤岛”难题普遍存在。制造业生产、管理、质检、销售等部门,往往局限于大大小小的“孤岛”之中。比如,生产部门和销售部门在各自的原创 2021-07-14 16:09:36 · 344 阅读 · 0 评论 -
工厂数据如何利用?工业大数据热门解决方案盘点!
当下,制造业是受大数据趋势和可能性影响最大的行业,因为工厂生产的数据量和性质是非常适合大数据处理的,越来越多的制造商开始使用大数据分析工具,试图利用工业大数据改变生产情况好,提高企业生产效率,从而提升经济效益。然而,根据估计,33%的数据在分析时可能很有用。然而,只有0.5%的可用数据由公司处理。这意味着制造商还有32.5%的数据没有被利用,剩下32.5%数据的合理利用可以为企业提供更有价值的业务洞察和收入增长。那大数据应用在制造业的哪些环节呢?本文将详细介绍几种热门的工业大数据解决方案。1原创 2021-07-13 11:17:31 · 871 阅读 · 0 评论 -
慧都工业大数据分析平台,探索工业数据应用价值
工业大数据是什么?工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品全生命周期各个环节所产生的各类数据及相关技术和应用的总称。工业大数据特征?数据容量大:工业数据体量比较大,大量机器设备的高频数据和互联网数据持续涌入,大型工业企业的数据集将达到PB级甚至EB级别。多样:工业数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等各个环节。快速:工业数据处理速度需原创 2021-07-09 17:31:34 · 263 阅读 · 1 评论 -
生产质量分析工具是什么?如何运用?
众所周知,质量是企业的生命。要想企业长久稳定的发展,就必须重视企业的生产质量。随着智能制造的普及,很多制造业企业开始接入各种业务系统,比如:MES系统、ERP、SPC等系统。这些系统虽然能一定程度上实现生产质量的追溯,但是接入复杂,前期准备长,需要相关业务人员的配合,耗时长。那有没有相对部署简单,员工自己就能操作并有效实现质量分析的工具,本文将详细介绍慧都生产质量分析工具,以及如何落地运用。生产质量分析工具,一个平台搞定所有人需求生产质量分析工具,是一个自助式bi工具。整合了多方业务系统数据,比原创 2021-07-08 17:02:04 · 357 阅读 · 0 评论 -
做好车间生产管理,从5个方向入手就够了,快收藏!
在日益严峻的市场环境下,车间生产的产品品种是越来越多,产品的生命周期是越来越短,车间的生产压力越来越大。客户要求交货周期短,交货准时,质量要更高。制造业的竞争究其根本就是生产效率和生产成本的竞争,车间管理者面对这一挑战,要如何做好车间生产管理呢?本文将从5个方面,全面为大家答疑解惑。1、强化设备管理加强对大型设备的管理,合理利用车间现有设备,使每台设备发挥其最大的工作效能,是车间生产管理必不可少的重要工作。在车间现场管理中,首先要保证设备的健康使用,要指导工人如何正确使用设备,工人不能野蛮操原创 2021-07-05 17:02:47 · 954 阅读 · 0 评论 -
生产质量分析,助力企业提升车间生产质量与生产效率
企业的竞争本质上就是生产效率和产品质量的竞争。如何提高生产效率是企业永续发展的关键问题,提高生产效率也有利于降低生产成本。在制造型企业里,生产工艺复杂,生产流程长,生产质量不易管控。如何保证生产质量,并提高生产效率,是制造型企业当下的发展难点。影响生产效率的因素:1、产品加工工艺变更频繁,生产工艺复杂2、生产过程品质不稳定,频频出现返工或返修3、紧急单或临时单太多,生产计划变更频繁4、生产车间机器故障,维修时间长5、采购物料计划与生产计划不能协调同步进行6、采购物料时常延迟、采购原创 2021-06-28 15:51:01 · 360 阅读 · 0 评论