KNN(K 邻近算法) 相关知识

kNN(K 邻近算法)主要根据特征之间的距离来进行分类的。为监督学习算法。

工作原理:

训练数据(tranningdata):每条数据都有标签(知道所属的类),一个标签代表一类。

测试数据(testingdata):把新数据(无标签)的每一个特征与样本集中数据对应的特征进行比较,然后提取与训练数据集最相似的(最邻近)的分类标签。

最后提取样本数据集中前K个最相似的数据(kNN的出处)和K 一般小于20的整数。在K个数据中,出现最多的标签作为该数据的标签。

维基百科的解释:

k近邻算法例子。测试样本(绿色圆形)应归入要么是第一类的蓝色方形或是第二类的红色三角形。如果k=3(实线圆圈)它被分配给第二类,因为有2个三角形和只有1个正方形在内侧圆圈之内。

如果k=5(虚线圆圈)它被分配到第一类(3个正方形与2个三角形在外侧圆圈之内)。

步骤:

对于未知类属性集中每一个点依次执行以下操作:

1 计算已知类中的点与当前点之间的距离

2  按照距离递增的次序排序

3  选取与当前点距离最小的k个点

4  确定前k个点所在的类别出现的频率

5  返回前k个点中出现频率最高的类作为当前点的预测分类

主要代码:

def classify0(inX,dataSet,labels,k):
    dataSetSize=dataSet.shape[0];
    diffMat=tile(inX,(dataSetSize,1))-dataSet;
    sqDiffMax=diffMat**2;
    sqDistance=sqDiffMax.sum(axis=1);
    distance=sqDistance**0.5;
    sorteDistIndicies=distance.argsort();
    classCount={};
    print (sorteDistIndicies[1])

    for i in range(k):
        voteIlabel=labels[sorteDistIndicies[i]];
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1;
    sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True);
    return sortedClassCount[0][0];

效果判断

分类器的错误率=分类器给出的错误结果的次数/测试实行的总数。例如有10数据,2个分错了。错误率为: 2/10=0.2;完美分类器错误率为0.最差分类器效果为0.

结果讨论:

起初,随着k的增长,k近邻分类器的效果逐渐提升;当k增大到某一个点后,随着k的增大,k近邻分类器性能逐渐下降。还可以说,k的增大,偏差逐渐增大而方差逐渐减少。

K的选择

在投票时使用距离加权(distanceweighting)可一定程度上回避给问题。训练数据集与待分类实例的距离越近,其权重越大。

优点:

精度高,对异常值不敏感,无数据输入假定。

注:

异常值(outlier):一组测定值与平均值的偏差超过两倍标准的测定值。与平均值超过三倍标准差的测定值为高度异常的异常值。

缺点:

计算复杂度高,空间复杂度高

必须保存全部的数据集。如果数据集大将使用大量内存空间。

必须对数据集中每个数据计算距离值,耗时

无法给出任何数据的基础结构信息。

当维数比较多时产生维数灾(feature selection和PCA可以解决)


计算距离的方法

1.欧式距离(Euclidean Distance)

 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。

二维平面上两点a(x1,y1)与b(x2,y2)之间的欧式距离:

    

两个n维向量a(x11,x12,…,x1n) b(x21,x22,…,x2n)间的欧氏距离:

也可以变事成向量运算的形式:

2. 曼哈顿距离(Manhattan Distance)

 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个曼哈顿距离。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)

(1)二维平面两点a(x1,y1)b(x2,y2)间的曼哈顿距离

 

(2)两个n维向量a(x11,x12,…,x1n) b(x21,x22,…,x2n)间的曼哈顿距离

 

3. 切比雪夫距离 ( Chebyshev Distance )

      国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 。有一种类似的一种距离度量方法叫切比雪夫距离。

(1)二维平面两点a(x1,y1)b(x2,y2)间的切比雪夫距离

 

(2)两个n维向量a(x11,x12,…,x1n) b(x21,x22,…,x2n)间的切比雪夫距离

 

  这个公式的另一种等价形式是

      用放缩法和夹逼法则来证明两个公式是等价的

4. 闵可夫斯基距离(Minkowski Distance)

闵氏距离不是一种距离,而是一组距离的定义。

(1) 闵氏距离的定义

       两个n维变量a(x11,x12,…,x1n) b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

 

其中p是一个变参数。

p=1时,就是曼哈顿距离

p=2时,就是欧氏距离

p时,就是切比雪夫距离

       根据变参数的不同,闵氏距离可以表示一类的距离。

(2)闵氏距离的缺点

  闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。

  举个例子:二维样本(身高,体重),其中身高范围是150~190,体重范围是50~60,有三个样本:a(180,50)b(190,50)c(180,60)。那么ab之间的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于ac之间的闵氏距离,但是身高的10cm真的等价于体重的10kg么?因此用闵氏距离来衡量这些样本间的相似度很有问题。

      简单说来,闵氏距离的缺点主要有两个:(1)将各个分量的量纲(scale),也就是单位当作相同的看待了。(2)没有考虑各个分量的分布(期望,方差等)可能是不同的。

5. 标准化欧氏距离 (Standardized Euclidean distance )

  标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都标准化到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)m,标准差(standard deviation)s,那么X标准化变量表示为(样本集的标准化过程(standardization)用公式描述):

  标准化后的值 =  ( 标准化前的值  分量的均值 ) /分量的标准差(也叫归一化)

  经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n) b(x21,x22,…,x2n)间的标准化欧氏距离的公式:

  如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)

6. 马氏距离(Mahalanobis Distance)

(1)马氏距离定义

       M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量Xu的马氏距离表示为:

 

       而其中向量XiXj之间的马氏距离定义为:

 

       若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了:

 

       也就是欧氏距离了。

若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。

(2)马氏距离的优缺点:量纲无关,排除变量之间的相关性的干扰。

7. 夹角余弦(Cosine)

       几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

 

(2) 两个n维样本点a(x11,x12,…,x1n)b(x21,x22,…,x2n)的夹角余弦

       类似的,对于两个n维样本点a(x11,x12,…,x1n)b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

 

  即:

 

       夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1

8. 汉明距离(Hamming distance)

      两个等长字符串s1s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”“1001”之间的汉明距离为2

      应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

9. 杰卡德相似系数(Jaccard similarity coefficient)

(1) 杰卡德相似系数

       两个集合AB的交集元素在AB的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

 

  杰卡德相似系数是衡量两个集合的相似度一种指标。

(2) 杰卡德距离

       与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:

  杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

(3) 杰卡德相似系数与杰卡德距离的应用

       可将杰卡德相似系数用在衡量样本的相似度上。

  样本A与样本B是两个n维向量,而且所有维度的取值都是01。例如:A(0111)B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

:样本AB都是1的维度的个数

:样本A1,样本B0的维度的个数

:样本A0,样本B1的维度的个数

:样本AB都是0的维度的个数

那么样本AB的杰卡德相似系数可以表示为:

这里p+q+r可理解为AB的并集的元素个数,而pAB的交集的元素个数。

而样本AB的杰卡德距离表示为:

 

10. 相关系数 ( Correlation coefficient )与相关距离(Correlation distance)

(1) 相关系数的定义

相关系数是衡量随机变量XY相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明XY相关度越高。当XY线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。

(2)相关距离的定义

 

11. 信息熵(Information Entropy)

信息熵是衡量分布的混乱程度或分散程度的一种度量。分布越分散(或者说分布越平均),信息熵就越大。分布越有序(或者说分布越集中),信息熵就越小。

       计算给定的样本集X的信息熵的公式:

参数的含义:

n:样本集X的分类数

piX中第i类元素出现的概率

       信息熵越大表明样本集S分类越分散,信息熵越小则表明样本集X分类越集中。。当Sn个分类出现的概率一样大时(都是1/n),信息熵取最大值log2(n)。当X只有一个分类时,信息熵取最小值0

文献

机器学习经典算法详解及Python实现--K近邻(KNN)算法

机器学习(Peter Flach)
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值