常微分方程
本章描述求解常微分方程初值问题的函数。本库提供了各种低级方法,如Runge-Kutta和Burirsch-Stoer例程,以及用于自适应步长控制的高级组件。用户可以组合这些组件来实现所需的解决方案,并完全访问任何中间步骤。驱动程序对象可以用作高级包装器,以便于使用低级函数。
这些函数声明在头文件gsl_odeiv2.h中。这是版本1.15中的一个新接口,所有函数都使用前缀gsl_odeiv2。推荐使用gsl_odeiv.h中定义的以前的gsl_odeiv开头的实现。为了向后兼容,旧的接口保留了原来的名称。
29.1 定义ODE系统
程序求解一般n维一阶系统,
其中,i=1,...,n。阶跃函数依赖于导数fi的向量和雅可比矩阵,
使用gsl_odeiv2_system数据类型定义方程组。
gsl_odeiv2_system
这种数据类型定义了一个具有任意参数的通用ODE系统。
int (* function) (double t, const double y[], double dydt[], void * params)
本函数将向量元素fi(t, y, params)存储在dydt数组中,用于参数(t, y)和参数params。
如果计算成功完成,本函数返回GSL_SUCCESS。任何其他返回值表示错误。特殊的返回值GSL_EBADFUNC会导致gsl_odeiv2程序立即停止并返回。如果函数被修改(例如params的内容),用户必须在继续之前调用一个适当的重置函数(gsl_odeiv2_driver_reset(), gsl_odeiv2_evolve_reset()或gsl_odeiv2_step_reset())。使用与标准GSL错误代码不同的返回值来区分您的函数的错误来源。
int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[],
void * params)
本函数存储导数元素的向量
在数组dfdt中,雅可比矩阵Jij存储在dfdy中。视为一个行序矩阵J(i, j) = dfdy[i * dimension + j],其中dimension是系统的维数。
并不是gsl_odeiv2的所有步进算法都使用雅可比矩阵,因此可能没有必要提供这个函数(可以用这些算法的空指针替换雅可比矩阵元素的结构体)。
如果计算成功完成,本函数应该返回GSL_SUCCESS。任何其他返回值表示错误。特殊的返回值GSL_EBADFUNC会导致gsl_odeiv2程序立即停止并返回。如果雅比矩阵被修改(例如params的内容),用户必须在继续之前调用一个适当的重置函数(gsl_odeiv2_driver_reset()、gsl_odeiv2_evolve_reset()或gsl_odeiv2_step_reset())。使用与标准GSL错误代码不同的返回值来区分您的函数的错误来源。
size_t dimension
这是方程组的维数。
void * params
这是一个指向系统任意参数的指针。
29.2 步进函数
最低级组件是步进函数,它将一个固定步长h的解从时间t推进到t + h,并估计产生的局部误差。
gsl_odeiv2_step
这包含了步进函数的内部参数。
gsl_odeiv2_step * gsl_odeiv2_step_alloc(const gsl_odeiv2_step_type * T,
size_t dim)
本函数返回一个指针,指向一个新分配的T型步进函数的实例,用于dim维系统。请注意,如果您使用需要访问驱动程序对象的步进方法,建议使用驱动程序分配方法,该方法也会自动分配步进器。
int gsl_odeiv2_step_reset(gsl_odeiv2_step * s)
本函数重置步进函数s。当s的下一次使用不是前一个步骤的延续时,就应该使用它。
void gsl_odeiv2_step_free(gsl_odeiv2_step * s)
本函数释放了所有与步进函数s相关的内存。