💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于CNN-BiLSTM(卷积神经网络结合双向长短记忆网络)的风电功率预测研究,是一种结合了深度学习技术的先进方法,旨在提高风电功率预测的准确性。以下是对该方法的详细探讨:
风电功率预测的重要性
风电功率预测在风电场运营和电网调度中至关重要。准确的风电功率预测有助于风电场的安全稳定运行、电网的可靠调度和优化配置,减少因预测不准确带来的电力供应波动,提升电力系统的整体效率和稳定性。
传统方法的局限性
传统方法主要基于统计模型和时间序列分析,如自回归滑动平均(ARMA)、支持向量机(SVM)等。这些方法在处理复杂多变的风电数据时往往难以捕捉其内在的非线性关系和长期依赖性,导致预测精度有限。
CNN-BiLSTM模型的优势
随着深度学习的兴起,卷积神经网络(CNN)和循环神经网络(RNN)的变体,如长短记忆网络(LSTM)和双向长短记忆网络(BiLSTM),因其强大的特征提取和序列建模能力,在风电功率预测中取得了显著成果。CNN擅长提取空间特征,而BiLSTM则能够捕捉序列中的长期依赖关系,结合两者可以充分利用多源输入数据中的时空相关性,提高预测精度。
CNN-BiLSTM模型结构
1. 输入层
模型接受多变量输入,包括历史风电功率数据、气象数据(如风速、风向、温度等)和地理信息等多源异构数据。
2. CNN模块
CNN模块由多个卷积层和池化层组成,用于从输入数据中提取局部时空特征。卷积层通过滑动窗口和卷积核操作,提取输入数据的局部特征;池化层则对特征进行降维和抽象,减少计算量并提取更重要的特征。
3. BiLSTM模块
BiLSTM模块由两个LSTM层组成,分别处理正向和反向序列,从而充分利用序列中的前后信息。BiLSTM能够捕捉输入序列中的长期依赖关系,对于风电功率预测中的时间序列数据尤为重要。
4. 全连接层
全连接层将CNN和BiLSTM模块的输出连接起来,通过非线性变换将学习到的特征映射到输出层,实现对风电功率的回归预测。
5. 输出层
输出层输出单一预测值,代表未来某一时间段内的风电功率。
训练与评估
在训练过程中,使用历史风电功率数据和对应的多个输入变量数据作为训练集,通过适当的损失函数(如均方误差MSE)和优化算法(如随机梯度下降SGD)来调整模型参数,使预测结果逐渐接近真实值。训练完成后,使用测试集评估模型的性能,并对未来的风电功率进行预测。
实验结果
实验结果表明,基于CNN-BiLSTM的风电功率预测模型在不同时间尺度上均取得了优异的预测精度,与其他先进方法相比,在MSE和平均绝对误差(MAE)等指标上均表现出更佳的性能。
未来展望
未来,可以进一步探索不同网络结构和优化算法,以进一步提高预测精度和鲁棒性。同时,随着可再生能源的快速发展和风电数据的不断积累,基于深度学习的风电功率预测方法将具有更广阔的应用前景,为电力系统的稳定运行和电力市场的合理调度提供有力支持。
📚2 运行结果
部分代码:
% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74 0.8 0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]
%
% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87 0.15 712.77 684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】
%
% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72 0.87 0.08 742.81 751.3】
function res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
for i = 1:num_samples
h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
res{i,1}= h1;
h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
res{i,2} = h2;
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取