个人总结:降维 从 PCA 到 LDA

本文介绍了线性判别分析(LDA)与主成分分析(PCA)的降维原理,LDA作为有监督降维技术,旨在最大化类间方差和最小化类内方差,适用于分类任务;PCA则是无监督方法,目标是最大化样本方差。通过瑞利商的概念解释了LDA的优化目标,并探讨了两者在图像识别等领域的应用和优缺点。
摘要由CSDN通过智能技术生成

个人总结:PCA中,对PCA的原理以及理由进行了一个概述,PCA应该是降维领域名声最大的算法,但是提到PCA,就不得不联想到另外一个名气也不小的降维算法 LDA : Linear Discriminant Analysis,线性判别分析。它在模式识别领域(人脸识别等图像识别领域)用途广泛。同时需要区分自然语言处理的LDA : Latent Dirichlet Allocation, 隐含狄利克雷分布。下面讲到的是线性判别分析。

LDA的目的

这里就需要和PCA进行区分了。PCA是无监督降维技术,面对的是没有类别的数据,而LDA不同,它是有监督降维技术,面对的是类别标记的数据。同时,PCA的目的是在投影后“在特征向量对应的维度最大投影方差”,而LDA的目的是“类内的方差最小化,类间的方差最大化”。用一张图进行理解。

右图相对于左图就更符合LDA的目的。当然实际应用中,数据是多个类别的,原始数据一般也是超过二维的,投影后一般也不是一条直线,而是一个低维的超平面。

首先了解一下瑞利商

瑞利商在LDA的地位就如同协方差矩阵在PCA的地位。

这样的函数R(A, x)

其中x为非零向量,而A为n x n的Hermitan矩阵。Hermitan矩阵即是满足的矩阵,如果矩阵A是实矩阵,则满足的矩阵即为Hermitan矩阵。

瑞利商的重要性质,它的最大值等于矩阵A的最大特征值,最小值等于矩阵A的最小特征值,

当x为标准正交基时,瑞利商退化为

而我们之后要用到的广义瑞利商R(A,B,x):


x为非零向量,而A,B为n x n的Hermitan矩阵。B为正定矩阵,对任意非零向量z,都有 zTBz > 0。

现在有一个问题是想要知道广义瑞利商的最大值和最小值。

首先令

这里B^(-1/2)要求B一定为正定矩阵。内部细节为:存在一个正交矩阵Q,使得B=Q^{T}AQ, A是一个对角矩阵,且对角线上元素均大于0。将A上对角元素开根号,得到B=Q^{T}AQ=Q^{T} A^{1/2}QQ^{T}A^

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值