代数第一章第一节

(1.1.1) A m rows,n columns matrix ∣ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a m 1 ⋯ a m n ∣ \begin{vmatrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{m1}&\cdots&a_{mn}\end{vmatrix} a11am1a1namn .

(1.1.2) 1 ∗ m 1*m 1m matrix multiply m ∗ 1 m*1 m1 matrix is 1 ∗ 1 1*1 11 matrix A = ∣ a 1 a 2 … a m ∣ A=\begin{vmatrix}a_{1}&a_{2}&\dots&a_{m}\end{vmatrix} A= a1a2am , B = ∣ b 1 b 2 ⋮ b m ∣ B=\begin{vmatrix}b_{1}\\b_{2}\\\vdots\\b_{m}\end{vmatrix} B= b1b2bm , A B = a 1 b 1 + a 2 b 2 + ⋯ + a m b m AB=a_{1}b_{1}+a_{2}b_{2}+\dots+a_{m}b_{m} AB=a1b1+a2b2++ambm.

(1.1.3) A = ∣ a 11 … a 1 m ⋮ ⋱ ⋮ a l 1 … a l m ∣ A=\begin{vmatrix}a_{11}&\dots&a_{1m}\\\vdots&\ddots&\vdots\\a_{l1}&\dots&a_{lm}\end{vmatrix} A= a11al1a1malm , B = ∣ b 11 … b 1 n ⋮ ⋱ ⋮ b m 1 … b m n ∣ B=\begin{vmatrix}b_{11}&\dots&b_{1n}\\\vdots&\ddots&\vdots\\b_{m1}&\dots&b_{mn}\end{vmatrix} B= b11bm1b1nbmn , p i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i m b m j p_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\dots+a_{im}b_{mj} pij=ai1b1j+ai2b2j++aimbmj.

(1.1.4) ∣ 2 1 0 1 3 5 ∣ ∣ 1 − 1 4 ∣ = ∣ 1 18 ∣ \begin{vmatrix}2&1&0\\1&3&5\end{vmatrix}\begin{vmatrix}1\\-1\\4\end{vmatrix}=\begin{vmatrix}1\\18\end{vmatrix} 211305 114 = 118 .

(1.1.5) Linear equations { a 11 x 1 + ⋯ + a 1 n x n = b 1 a 21 x 1 + ⋯ + a 2 n x n = b 2 ⋮ a m 1 x 1 + ⋯ + a m n x n = b m \begin{cases}a_{11}x_1+\dots+a_{1n}x_n=b_1\\a_{21}x_1+\dots+a_{2n}x_n=b_2\\ \vdots\\a_{m1}x_1+\dots+a_{mn}x_n=b_m\end{cases} a11x1++a1nxn=b1a21x1++a2nxn=b2am1x1++amnxn=bm, A X = B AX=B AX=B.

(1.1.6) Sigma notation p i j = ∑ v = 1 m a i v b v j = ∑ v a i v b v j p_{ij}=\sum_{v=1}^ma_{iv}b_{vj}=\sum_va_{iv}b_{vj} pij=v=1maivbvj=vaivbvj.

(1.1.7) Distributive laws { A ( B + B ′ ) = A B + A B ′ ( A + A ′ ) B = A B + A ′ B \begin{cases}A(B + B')=AB+AB'\\(A+A')B=AB+A'B\end{cases} {A(B+B)=AB+AB(A+A)B=AB+AB.

(1.1.8) Associative law ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC).

(1.1.9) Scalar multiplication c ( A B ) = ( c A ) B = A ( c B ) c(AB)=(cA)B=A(cB) c(AB)=(cA)B=A(cB).

(1.1.10) Commutative law A B ≠ B A , u s u a l l y AB\neq BA,usually AB=BA,usually.

(1.1.11) A A A is an m ∗ n m*n mn matrix A I n = A   a n d   I m A = A AI_n=A\ and\ I_mA=A AIn=A and ImA=A.

(1.1.12) A B = I n   a n d   B A = I n AB=I_n\ and\ BA=I_n AB=In and BA=In, B B B is called an inverse of A A A and is denoted by A − 1 A^{-1} A1.

(1.1.13) A − 1 A = I = A A − 1 A^{-1}A=I=AA^{-1} A1A=I=AA1.

(1.1.14) ∣ 1 2 ∣ − 1 = ∣ 1 1 2 ∣   a n d   ∣ 1 1 1 ∣ − 1 = ∣ 1 − 1 1 ∣ \begin{vmatrix}1&\\&2\end{vmatrix}^{-1}=\begin{vmatrix}1&\\&\frac{1}{2}\end{vmatrix}\ and\ \begin{vmatrix}1&1\\&1\end{vmatrix}^{-1}=\begin{vmatrix}1&-1\\&1\end{vmatrix} 12 1= 121  and  111 1= 111 .

(1.1.15) Let A A A be a square matrix that has a right inverse, a matrix R R R such that A R = I AR = I AR=I and also a left inverse, a matrix L L L such that L A = I LA = I LA=I. Then R = L R = L R=L. So A A A is invertible and R R R is its inverse.

Proof. R = I R = ( L A ) R = L ( A R ) = L I = L R=IR=(LA)R=L(AR)=LI=L R=IR=(LA)R=L(AR)=LI=L.

(1.1.16) Let A A A and B B B be invertible n ∗ n n * n nn matrices. The product A B AB AB and the inverse $ A^{-1} $ are invertible, ( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)1=B1A1 and ( A − 1 ) − 1 = A (A ^{-1})^{-1} = A (A1)1=A. If A 1 , … , A m A_1,\dots,A_m A1,,Am are invertible n ∗ n n*n nn matrices, the product A 1 … A m A_1 \dots A_m A1Am is invertible, and its inverse is A m − 1 … A 1 − 1 A_m^{-1} \dots A_1^{-1} Am1A11.

Proof. Assume that A A A and B B B are invertible. To show that the product B − 1 A − 1 = Q B^{-1}A^{-1} = Q B1A1=Q is the inverse of A B = P AB = P AB=P, we simplify the products P Q PQ PQ and Q P QP QP, obtaining I I I in both cases. The verification of the other assertions is similar.

(1.1.17) ∣ a b c d ∣ − 1 = 1 a d − b c ∣ d − b − c a ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix}^{-1}=\frac{1}{ad-bc}\begin{vmatrix}d&-b\\-c&a\end{vmatrix} acbd 1=adbc1 dcba .

(1.1.18) A square matrix that has either a row of zeros or a column of zeros is not invertible.

Proof. If a row of an n ∗ n n*n nn matrix A A A is zero and if B B B is any other n ∗ n n*n nn matrix, then the corresponding row of the product A B AB AB is zero too. So A B AB AB is not the identity. Therefore A A A has no right inverse. A similar argument shows that if a column of A A A is zero, then A A A has no left inverse.

(1.1.19) M = ∣ A B ∣   a n d   M ′ = ∣ A ′ B ′ ∣ M=\left|\begin{array}{c|c}A&B\end{array}\right|\ and\ M'=\left|\begin{array}{c}A'\\\hline B'\end{array}\right| M= AB  and M= AB , M M ′ = A A ′ + B B ′ MM'=AA'+BB' MM=AA+BB, A A A has r columns and A ′ A' A has r rows.

(1.1.20) M = ∣ A B C D ∣ M=\left|\begin{array}{c|c}A&B\\\hline C&D\end{array}\right| M= ACBD , M ′ = ∣ A ′ B ′ C ′ D ′ ∣ M'=\left|\begin{array}{c|c}A'&B'\\\hline C'&D'\end{array}\right| M= ACBD , M M ′ = ∣ A A ′ + B C ′ A B ′ + B D ′ C A ′ + D C ′ C B ′ + D D ′ ∣ MM'=\left|\begin{array}{c|c}AA'+BC'&AB'+BD'\\\hline CA'+DC'&CB'+DD'\end{array}\right| MM= AA+BCCA+DCAB+BDCB+DD .

(1.1.21) Matrix unit e i j = ∣ ⋮ … 1 … ⋮ ∣ e_{ij}=\left|\begin{array}{ccc}&\vdots&\\\dots&1&\dots\\&\vdots&\end{array}\right| eij= 1 .

(1.1.22) A = a 11 e 11 + a 12 e 12 + ⋯ = ∑ i , j a i j e i j A=a_{11}e_{11}+a_{12}e_{12}+\dots=\sum_{i,j}a_{ij}e_{ij} A=a11e11+a12e12+=i,jaijeij.

(1.1.23) e i j e j l = e i l e_{ij}e_{jl}=e_{il} eijejl=eil and e i j e k l = 0 e_{ij}e_{kl}=0 eijekl=0 if j ≠ k j\ne k j=k.

(1.1.24) X = x 1 e 1 + ⋯ + x n e n = ∑ i x i e i X=x_1e_1+\dots+x_ne_n=\sum_ix_ie_i X=x1e1++xnen=ixiei.

(1.1.25) e i j e j = e i e_{ij}e_j=e_i eijej=ei and e i j e k = 0 e_{ij}e_k=0 eijek=0 if j ≠ k j\ne k j=k.

  • 16
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值