代数第一章第四节

(1.4.1) d e t ∣ a ∣ = a det|a|=a deta=a.

(1.4.2) d e t ∣ a b c d ∣ = a d − b c det\left|\begin{array}{cc}a&b\\c&d\end{array}\right|=ad-bc det acbd =adbc.

(1.4.3) ∣ 3 1 2 4 ∣ \left|\begin{array}{cc}3&1\\2&4\end{array}\right| 3214 means a 2-dimension with basics of (3, 2) and (1, 4).

(1.4.4) Let A A A be an n ∗ n n*n nn matrix and let A i j A_{ij} Aij denote the ( n − 1 ) ∗ ( n − 1 ) (n−1)*(n−1) (n1)(n1) submatrix obtained by crossing out the i i ith row and the j j jth column of A.

(1.4.5) A = ∣ 1 0 3 2 1 2 0 5 1 ∣ A=\left|\begin{array}{ccc}1&0&3\\2&1&2\\0&5&1\end{array}\right| A= 120015321 , d e t A = a 11 d e t A 11 − a 21 d e t A 21 + a 31 d e t A 31 − ⋯ ± a n 1 d e t A n 1 detA=a_{11}detA_{11}-a_{21}detA_{21}+a_{31}detA_{31}-\dots\pm a_{n1}detA_{n1} detA=a11detA11a21detA21+a31detA31±an1detAn1. The signs alternate, beginning with +.

(1.4.6) d e t A = ∑ v ( − 1 ) v + 1 a v 1 d e t A v 1 detA=\sum_{v}(-1)^{v+1}a_{v1}detA_{v1} detA=v(1)v+1av1detAv1.

(1.4.7) There is a unique function δ \delta δ on the space of n ∗ n n * n nn matrices with the properties below, namely the determinant (1.4.5).

(i) With I I I denoting the identity matrix, δ ( I ) = 1 \delta(I)=1 δ(I)=1.

(ii) δ \delta δ is linear in the rows of the matrix A A A.
(iii) If two adjacent rows of a matrix A A A are equal, then δ ( A ) = 0 \delta(A)=0 δ(A)=0.

Proof. There are two parts. To prove uniqueness, we perform row reduction on a matrix A A A, say A ′ = E k … E 1 A A' = E_k\dots E_1A A=EkE1A. Corollary 1.4.13 tells us how to compute δ ( A ) δ(A) δ(A) from δ ( A ′ ) δ(A') δ(A). If A ′ A' A is the identity, then δ ( A ′ ) = 1 δ(A') = 1 δ(A)=1. Otherwise the bottom row of A ′ A' A is zero, and in that case Theorem 1.4.10 shows that δ ( A ′ ) = 0 δ(A') = 0 δ(A)=0. This determines δ ( A ) δ(A) δ(A) in both cases.

Note: It is a natural idea to try defining determinants using compatibility with multiplication and Corollary 1.4.13. Since we can write an invertible matrix as a product of elementary matrices, these properties determine the determinant of every invertible matrix. But there are many ways to write a given matrix as such a product. Without going through some steps as we have, it won’t be clear that two such products will give the same answer. It isn’t easy to make this idea work.
To complete the proof of Theorem 1.4.7, we must show that the determinant function (1.4.5) we have defined has the properties (1.4.7). This is done by induction on the size of the matrices. We note that the properties (1.4.7) are true when n = 1 n = 1 n=1, in which case d e t [ a ] = a det [a] = a det[a]=a. So we assume that they have been proved for determinants of ( n − 1 ) ∗ ( n − 1 ) (n − 1) * (n − 1) (n1)(n1) matrices. Then all of the properties (1.4.7), (1.4.10), (1.4.13), and (1.4.9) are true for ( n − 1 ) ∗ ( n − 1 ) (n − 1) * (n − 1) (n1)(n1) matrices. We proceed to verify (1.4.7) for the function δ = d e t δ = det δ=det defined by (1.4.5), and for n ∗ n n * n nn matrices. For reference, they are:

(i) With I I I denoting the identity matrix, d e t ( I ) = 1 det(I)=1 det(I)=1.

(ii) Det is linear in the rows of the matrix A A A.
(iii) If two adjacent rows of a matrix A A A are equal, then d e t ( A ) = 0 det(A)=0 det(A)=0.

(i) If A = I n A = I_n A=In, then a 11 = 1 a_{11} = 1 a11=1 and a ν 1 = 0 a_{ν1} = 0 aν1=0 when ν > 1 ν>1 ν>1. The expansion (1.4.5) reduces to d e t ( A ) = 1 d e t ( A 11 ) det (A) = 1 det (A_{11}) det(A)=1det(A11). Moreover, A 11 = I n − 1 A_{11} = I_{n−1} A11=In1, so by induction, d e t ( A 11 ) = 1 det (A_{11}) = 1 det(A11)=1 and d e t ( I n ) = 1 det(I_n) = 1 det(In)=1.
(ii) To prove linearity in the rows, we return to the notation introduced in (1.4.8). We show linearity of each of the terms in the expansion (1.4.5), i.e., that

(1.4.14) d v 1 d e t ( D v 1 ) = c a v 1 d e t ( A v 1 ) + c ′ b v 1 d e t ( B v 1 ) d_{v1}det(D_{v1})=ca_{v1}det(A_{v1})+c'b_{v1}det(B_{v1}) dv1det(Dv1)=cav1det(Av1)+cbv1det(Bv1)

for every index ν. Let k be as in (1.4.8).
Case 1: ν = k ν = k ν=k. The row that we operate on has been deleted from the minors A k 1 , B k 1 , D k 1 A_{k1}, B_{k1}, D_{k1} Ak1,Bk1,Dk1 so they are equal, and the values of det on them are equal too. On the other hand, a k 1 , b k 1 , d k 1 a_{k1}, b_{k1}, d_{k1} ak1,bk1,dk1 are the first entries of the rows A k , B k , D k A_k, B_k, D_k Ak,Bk,Dk, respectively. So d k 1 = c a k 1 + c ′ b k 1 d_{k1} = c a_{k1} + c' b_{k1} dk1=cak1+cbk1, and (1.4.14) follows.
Case 2: ν ≠ k ν\ne k ν=k. If we let A k ′ , B k ′ , D k ′ A'_k, B'_k, D'_k Ak,Bk,Dk denote the vectors obtained from the rows A k , B k , D k A_k, B_k, D_k Ak,Bk,Dk, respectively, by dropping the first entry, then A k ′ A_k' Ak is a row of the minor A ν 1 A_{ν1} Aν1, etc. Here D k ′ = c A k ′ + c ′ B k ′ D_k' =cA_k' +c'B_k' Dk=cAk+cBk, and by induction on n n n, d e t ( D v 1 ′ ) = c d e t ( A v 1 ′ ) + c ′ d e t ( B v 1 ′ ) det(D'_{v1})=cdet(A'_{v1})+c'det(B'_{v1}) det(Dv1)=cdet(Av1)+cdet(Bv1). On the other hand, since ν ≠ k ν\ne k ν=k, the coefficients a ν 1 , b ν 1 , d ν 1 a_{ν1}, b_{ν1}, d_{ν1} aν1,bν1,dν1 are equal. So (1.4.14) is true in this case as well.

(iii) Suppose that rows k k k and k + 1 k + 1 k+1 of a matrix A A A are equal. Unless ν = k   o r   k + 1 ν = k\ or\ k + 1 ν=k or k+1, the minor A ν 1 A_{ν1} Aν1 has two rows equal, and its determinant is zero by induction. Therefore, at most two terms in (1.4.5) are different from zero. On the other hand, deleting either of the equal rows gives us the same matrix. So a k , 1 = a k + 1 , 1   a n d   A k , 1 = A k + 1 , 1 a_{k,1} = a_{k+1,1}\ and\ A_{k,1} = A_{k+1,1} ak,1=ak+1,1 and Ak,1=Ak+1,1. Then d e t ( A ) = ∓ a k , 1 d e t ( A k , 1 ) ± a k + 1 , 1 d e t ( A k + 1 , 1 ) = 0 det(A)=\mp a_{k,1}det(A_{k,1})\pm a_{k+1,1}det(A_{k+1,1})=0 det(A)=ak,1det(Ak,1)±ak+1,1det(Ak+1,1)=0. This completes the proof of Theorem 1.4.7.

(1.4.8) δ ∣ ⋮ c A i + c ′ B i ⋮ ∣ = c δ ∣ ⋮ A i ⋮ ∣ + c ′ δ ∣ ⋮ B i ⋮ ∣ \delta\left|\begin{array}{c}\vdots\\cA_i+c'B_i\\\vdots\end{array}\right|=c\delta\left|\begin{array}{c}\vdots\\A_i\\\vdots\end{array}\right|+c'\delta\left|\begin{array}{c}\vdots\\B_i\\\vdots\end{array}\right| δ cAi+cBi = Ai +cδ Bi .

(1.4.9) Multiplicative Property of the Determinant. For any n ∗ n n*n nn matrices A and B, d e t ( A B ) = ( d e t A ) ( d e t B ) det (AB) = (det A)(det B) det(AB)=(detA)(detB).

Proof. We imagine the first step of a row reduction of A A A, say E A = A ′ EA = A' EA=A. Suppose we have shown that δ ( A ′ B ) = δ ( A ′ ) δ ( B ) δ(A'B) = δ(A')δ(B) δ(AB)=δ(A)δ(B). We apply Corollary 1.4.13: δ ( E ) δ ( A ) = δ ( A ′ ) δ(E)δ(A) = δ(A') δ(E)δ(A)=δ(A). Since A ′ B = E ( A B ) A'B = E(AB) AB=E(AB) the corollary also tells us that δ ( A ′ B ) = δ ( E ) δ ( A B ) δ(A'B) = δ(E)δ(AB) δ(AB)=δ(E)δ(AB). Thus δ ( E ) δ ( A B ) = δ ( A ′ B ) = δ ( A ′ ) δ ( B ) = δ ( E ) δ ( A ) δ ( B ) δ(E)δ(AB) = δ(A'B) = δ(A')δ(B) = δ(E)δ(A)δ(B) δ(E)δ(AB)=δ(AB)=δ(A)δ(B)=δ(E)δ(A)δ(B).
Canceling δ ( E ) δ(E) δ(E), we see that the multiplicative property is true for A A A and B B B as well. This being so, induction shows that it suffices to prove the multiplicative property after row-reducing A A A. So we may suppose that A A A is row reduced. Then A A A is either the identity, or else its bottom row is zero. The property is obvious when A = I A = I A=I. If the bottom row of A A A is zero, so is the bottom row of A B AB AB, and Theorem 1.4.10 shows that δ ( A ) = δ ( A B ) = 0 δ(A) = δ(AB) = 0 δ(A)=δ(AB)=0. The property is true in this case as well.

(1.4.10) Let δ \delta δ be a function on n ∗ n n * n nn matrices that has the properties (1.4.7)(i,ii,iii). Then

(a) If A ′ A' A is obtained from A A A by adding a multiple of (row j) of A A A to (row i) and i ≠ j i\ne j i=j, then δ ( A ′ ) = δ ( A ) δ(A') = δ(A) δ(A)=δ(A).
(b) If A ′ A' A is obtained by interchanging (row i) and (row j) of A A A and i ≠ j i\ne j i=j, then δ ( A ′ ) = − δ ( A ) \delta (A')=-\delta (A) δ(A)=δ(A).
(c) If A ′ A' A is obtained from A A A by multiplying (row i) by a scalar c, then δ ( A ′ ) = c δ ( A ) \delta(A') = c\delta(A) δ(A)=(A). If a row of a matrix A A A is equal to zero, then δ ( A ) = 0 \delta(A) = 0 δ(A)=0.
(d) If (row i) of A A A is equal to a multiple of (row j) and i ≠ j i\ne j i=j, then δ ( A ) = 0 \delta(A)=0 δ(A)=0.

Proof. The first assertion of (c) is a part of linearity in rows (1.4.7)(ii). The second assertion of (c) follows, because a row that is zero can be multiplied by 0 without changing the matrix, and it multiplies δ ( A ) \delta(A) δ(A) by 0.
Next, we verify properties (a),(b),(d) when i and j are adjacent indices, say j = i + 1. To simplify our display, we represent the matrices schematically, denoting the rows in question by R = (row i) and S = (row j), and suppressing notation for the other rows. So ∣ R S ∣ \left|\begin{array}{c}R\\S\end{array}\right| RS denotes our given matrix A A A. Then by linearity in the i i ith row,

(1.4.11) δ ∣ R + c S S ∣ = δ ∣ R S ∣ + c δ ∣ S S ∣ \delta\left|\begin{array}{c}R+cS\\S\end{array}\right|=\delta\left|\begin{array}{c}R\\S\end{array}\right|+c\delta\left|\begin{array}{c}S\\S\end{array}\right| δ R+cSS =δ RS + SS .

The first term on the right side is δ ( A ) δ(A) δ(A), and the second is zero (1.4.7). This proves (a) for adjacent indices. To verify (b) for adjacent indices, we use (a) repeatedly. Denoting the rows by R R R and S S S as before:

(1.4.12) δ ∣ R S ∣ = δ ∣ R − S S ∣ = δ ∣ R − S S + ( R − S ) ∣ = δ ∣ R − S R ∣ = δ ∣ − S R ∣ = − δ ∣ S R ∣ \delta\left|\begin{array}{c}R\\S\end{array}\right|=\delta\left|\begin{array}{c}R-S\\S\end{array}\right|=\delta\left|\begin{array}{c}R-S\\S+(R-S)\end{array}\right|=\delta\left|\begin{array}{c}R-S\\R\end{array}\right|=\delta\left|\begin{array}{c}-S\\R\end{array}\right|=-\delta\left|\begin{array}{c}S\\R\end{array}\right| δ RS =δ RSS =δ RSS+(RS) =δ RSR =δ SR =δ SR .

Finally, (d) for adjacent indices follows from (c) and (1.4.7)(iii).

To complete the proof, we verify (a),(b),(d) for an arbitrary pair of distinct indices. Suppose that (row i) is a multiple of (row j). We switch adjacent rows a few times to obtain a matrix A ′ A' A in which the two rows in question are adjacent. Then (d) for adjacent rows tells us that δ ( A ′ ) = 0 δ(A') = 0 δ(A)=0, and (b) for adjacent rows tells us that δ ( A ′ ) = ± δ ( A ) δ(A') = \pmδ(A) δ(A)=±δ(A). So δ ( A ) = 0 δ(A) = 0 δ(A)=0, and this proves (d). At this point, the proofs of that we have given for (a) and (b) in the case of adjacent indices carry over to an arbitrary pair of indices.

(1.4.13) Let δ δ δ be a function on n ∗ n n * n nn matrices with the properties (1.4.7), and let E E E be an elementary matrix. For any matrix A A A, δ ( E A ) = δ ( E ) δ ( A ) δ(EA) = δ(E)δ(A) δ(EA)=δ(E)δ(A). Moreover,

(i) If E E E is of the first kind (add a multiple of one row to another), then δ ( E ) = 1 δ(E) = 1 δ(E)=1.

(ii) If E E E is of the second kind (row interchange), then δ ( E ) = − 1 δ(E) = -1 δ(E)=1.
(iii) If E E E is of the third kind (multiply a row by c), then δ ( E ) = c δ(E) = c δ(E)=c.

Proof. The rules (1.4.10)(a),(b),(c) describe the effect of an elementary row operation on δ ( A ) δ(A) δ(A), so they tell us how to compute δ ( E A ) δ(EA) δ(EA) from δ ( A ) δ(A) δ(A). They tell us that δ ( E A ) = ε δ ( A ) δ(EA) = ε δ(A) δ(EA)=εδ(A), where ε = 1 , − 1 , o r   c ε = 1, -1, or\ c ε=1,1,or c according to the type of elementary matrix. By setting A = I A = I A=I, we find that δ ( E ) = δ ( E I ) = ε δ ( I ) = ε δ(E) = δ(EI) = εδ(I) = ε δ(E)=δ(EI)=εδ(I)=ε.

(1.4.15)

(a) A square matrix A A A is invertible if and only if its determinant is different from zero. If A A A is invertible, then d e t ( A − 1 ) = ( d e t A ) − 1 det(A^{-1}) = (detA)^{-1} det(A1)=(detA)1.
(b) The determinant of a matrix A A A is equal to the determinant of its transpose A t A^t At.
(c) Properties (1.4.7) and (1.4.10) continue to hold if the word row is replaced by the word column throughout.

Proof. (a) If A A A is invertible, then it is a product of elementary matrices, say A = E 1 … E r A = E_1\dots E_r A=E1Er(1.2.16). Then d e t A = ( d e t E 1 ) … ( d e t E k ) detA = (detE_1)\dots (detE_k) detA=(detE1)(detEk). The determinants of elementary matrices are nonzero (1.4.13), so d e t A detA detA is nonzero too. If A A A is not invertible, there are elementary matrices E 1 , … , E r E_1,\dots,E_r E1,,Er such that the bottom row of A ′ = E 1 … E r A A'=E_1\dots E_rA A=E1ErA is zero(1.2.15). Then d e t A ′ = 0 detA' = 0 detA=0, and d e t A = 0 detA = 0 detA=0 as well. If A A A is invertible, then d e t ( A − 1 ) d e t A = d e t ( A − 1 A ) = d e t I = 1 det(A^{-1})detA = det(A^{-1}A) = det I = 1 det(A1)detA=det(A1A)=detI=1, therefore d e t ( A − 1 ) = ( d e t A ) − 1 det(A^{-1})=(detA)^{-1} det(A1)=(detA)1.
(b) It is easy to check that d e t E = d e t E t detE = detE^t detE=detEt if E E E is an elementary matrix. If A A A is invertible, we write A = E 1 … E k A=E_1\dots E_k A=E1Ek as before. Then A t = E k t … E 1 t A^t =E_k^t\dots E_1^t At=EktE1t, and by the multiplicative property, d e t A = d e t A t detA = detA^t detA=detAt. If A A A is not invertible, neither is A t A^t At. Then both d e t A detA detA and d e t A t detA^t detAt are zero.
(c) This follows from (b).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值