[AI]Linux部署Ollama+Open-WebUi

1.部署Ollama

curl -fsSL https://ollama.com/install.sh | sh
  • 修改允许访问ip
# 在service下面加入一行配置
vim /etc/systemd/system/ollama.service
[Service]
Environment="OLLAMA_HOST=0.0.0.0:11434"
  • 重启ollama
systemctl daemon-reload
systemctl restart ollama
  • 安装Llama3 8B模型
ollama run llama3:8b

2.安装Docker

  • 更换国内源
yum install -y yum-utils
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
yum install -y docker-ce
  • 启动Docker
systemctl start docker
systemctl enable docker

3.部署Open-WebUi

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
  • 访问web界面 ip:port

输入IP:Port访问网页后先进行注册即可

### Ollama OpenWeb-UI 和 Dify 框架的区别 #### 功能特性差异 Ollama OpenWeb-UI 是一款用于与大型语言模型交互的前端界面工具,允许用户通过图形化界面轻松调用和管理基于本地部署的大规模预训练模型服务[^3]。而Dify则是一个更为综合性的开发框架,专注于简化AI应用构建过程中的复杂度,提供了一套完整的API接口以及配套的服务端逻辑实现方案[^2]。 #### 使用场景对比 对于希望快速搭建起能够与自托管的语言模型进行交流的应用程序开发者来说,OpenWeb-UI 提供了一个简单易用的选择;而对于那些寻求创建更复杂的、涉及多模块协作的人工智能解决方案的企业级客户而言,则可能更适合采用像Dify这样的全栈式平台来满足其需求。 #### 技术架构分析 在技术选型方面,两者也存在明显不同之处。OpenWeb-UI 主要侧重于为用户提供友好便捷的操作环境,因此更加注重用户体验设计及界面上的表现力;相比之下,Dify 不仅提供了丰富的编程接口支持定制化的业务功能扩展,还内置了许多高级特性和优化措施以提升整体性能表现。 ```bash # 安装并启动 OpenWeb-UI 的 Docker 实例 docker run -d --network=host \ -v /path/to/local/data:/app/backend/data \ -e OLLAMA_BASE_URL=http://your_model_server_ip:port \ --name open-webui --restart always ghcr.io/open-webui/open-webui:main ``` 上述命令展示了如何利用容器化技术迅速部署一个可用版本的 OpenWeb-UI 应用实例。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值