基于nvidia triton的模型工程化实践

什么是triton inference server?

它的前身是nvidia的tensorRT,triton在具备tensorRT的基础上,增加了主流的TF,pytorch,onnx等模型的推理部署支持。

是一款非常好的推理模型部署服务。

具体了解:NVIDIA Triton Inference Server | NVIDIA Developerhttps://developer.nvidia.com/nvidia-triton-inference-server

模型部署及优化实践

pytorch模型部署

pytorch模型需要提供jit之后的模型。

文件夹层次为:

model_name/

        1/model.pt

        config.pbtxt

只需要将上述文件夹拷贝到triton server里的models文件夹即可生效(可以配置triton监听文件夹变化,如果变化自动重启)。

config.pbtxt是这次讲解的重点,也是部署时最需要学习的地方。

以下是具体实例:

#this MUST be the same name with the outside folder
name: "ibuddha_chitchat"
# pytorch
platform: "pytorch_libtorch"
# you should limit this ,or else the graphic card will doom...
max_batch_size: 64
input [
  {
    #pytorch output this 0,1,2 silly name by default
    name: "INPUT__0"
    #int64 or int32, must be the same as the model define
    data_type: TYPE_INT64
    #dynamic sequence len, means you can input text len from 1 to 510 typically, or else you should put a fix value here
    dims: [-1]
  },
  {
    name: "INPUT__1"
    data_type: TYPE_INT64
    dims: [-1]
  },
  {
    name: "INPUT__2"
    data_type: TYPE_INT64
    dims: [-1]
  }
]
output [
  {
    #pytorch silly default name
    name: "OUTPUT__0"
    data_type: TYPE_FP32
    dims: [13088]
  }
]
# output only one which has bigger version
version_policy: { latest {num_versions: 1}}
#version_policy: { all {}}
# enable dynamic will improve your performance greatly
dynamic_batching {
}
# enable this will make your inference faster
parameters: {
key: "INFERENCE_MODE"
    value: {
    string_value:"true"
    }
}
# disable this. It is slower than default in my test
#parameters: {
#key: "ENABLE_NVFUSER"
#    value: {
#    string_value:"true"
#    }
#}

#pytorch model only run in graphic card 0 by default
instance_group [
  {
    count: 1
    kind: KIND_GPU
    gpus: [ 0 ]
  }
]

1代表版本号(建议从1...N,0无效)

model.pt为约定名字

name为模型名字,要求与外层的文件夹名字一致,因此外面的文件夹必须改为ibuddha_chitchat。

ibuddha_chitchat/

        1/model.pt

        config.pbtxt

pytorch模型的platform为:pytorch_libtorch

这个实例采用的是动态batching,也是官方推荐的优化方式。

dynamic_batching {}

使能动态batch会非常有效的提高推理的系统效率。

max_batch_size 需要设置合适,太大会导致显卡显存爆(triton显存爆可能导致triton挂且无法自动重启)(注意:dynamic_batching生效时,这个选项才有效)

input代表模型的输入

pytorch的bert,典型的名字为INPUT__0..INPUT__2

数据类型到底是TYPE_INT64还是TYPE_INT32,需要根据模型训练使用的数据类型定,同样是bert,有的是INT64有的是INT32,但3个INPUT都会是相同类型(目前没有找到具体规律)

dims: [-1]

代表动态sequence,表示输入的文本长度不需要是一个固定值。

注意,由于这里是动态batching,所以第一个维度的-1可以省略不写。

(如果不是动态batching,则dims: [N, -1])

output和input的格式一样

这里实例由于是GPT模型,会返回整句话中每个位置的13088个vocab的概率(浮点型)(后处理会选择概率最高的那个token作为输出(实际会复杂些))。

version_policy用来控制版本

实例的写法是只会有一个版本,triton自动选择数字最大的那个。

如果需要所有版本都输出,可以写如下:

version_policy: { all {}}

instance_group

count为1代表只有1个实例

KIND_GPU顾名思义是运行在GPU(也可以配置运行在CPU)

gpus: [0] 代表只运行在显卡0上

注意:pytorch模型目前有一个缺陷,只能固定在某个显卡上,默认都是显卡0(有可以不限制显卡0,可运行在多个显卡的,还请告知一下作者)

onnx模型部署

整个过程和pytorch非常类似,这里只说差异点:

模型统一约定名字为model.onnx

config.pbtxt的编写中:

platform: onnxruntime_onnx

由于pytorch转onnx,可以配置input_names,所以建议给团队约定的名字,便于维护:

input_ids, attention_mask, token_type_ids

实例的output,由于是返回句子的平均向量,因此直接是一个768长度的浮点数数组。

onnx模型也可以动态转为tensorRT,是不是能更快,需要各位自己实测。

name: "sps_sbert_onnx"
#onnx model
platform: "onnxruntime_onnx"
max_batch_size: 32
#recommend use the same name in your team, input_ids, attention_mask, token_type_ids
input [
  {
    name: "input_ids"
    data_type: TYPE_INT64
    dims: [-1]
  },
  {
    name: "attention_mask"
    data_type: TYPE_INT64
    dims: [-1]
  },
  {
    name: "token_type_ids"
    data_type: TYPE_INT64
    dims: [-1]
  }
]
output [
  {
    #recommend to use meaningful name
    name: "vector"
    data_type: TYPE_FP32
    dims: [768]
  }
]
#version_policy: { all {}}
version_policy: { latest {num_versions: 1}}
dynamic_batching { }
#you should test whether this can be faster
#change onnx 
optimization { execution_accelerators {
  gpu_execution_accelerator : [ { name : "tensorrt" } ]
}}

tensorflow模型部署

tensorflow模型推荐采用saved_model格式

将saved_model文件夹拷贝到版本文件夹中,命名为:model.savedmodel

1/model.savedmodel

        assets

        saved_model.pb

        variables

config.pbtxt

name: "shansou_rank"
platform: "tensorflow_savedmodel"
max_batch_size: 128
input [
  {
    name: "input_ids"
    data_type: TYPE_INT32
    #fix length of input. input should padding to max length or truncate the text over max length
    dims: [128]
  },
  {
    name: "input_mask"
    data_type: TYPE_INT32
    dims: [128]
  },
  {
    name: "segment_ids"
    data_type: TYPE_INT32
    dims: [128]
  }
]
output [
  {
    name: "output"
    data_type: TYPE_FP32
    dims: [1]
  }
]
dynamic_batching { }
#this will use V100/T4 or better graphic mix precision unit
#always fasters than tensorRT
optimization { execution_accelerators {
  gpu_execution_accelerator : [
    { name : "auto_mixed_precision" }
  ]
}}
version_policy: { latest {num_versions: 1}}

nvidia和tensorflow打磨的时间最久,支持的功能也最多。

例如可以直接配置tensorRT,动态将tensorflow模型直接转为tensorRT。

将过去繁琐的转tensorRT过程,变成了极其简单的配置即可生效的过程(推荐)。

如果不加parameters一句,默认是无损的FP32精度

optimization { execution_accelerators {
  gpu_execution_accelerator : [ {
    name : "tensorrt"
    #parameters { key: "precision_mode" value: "FP16" }}]
}}

实际上,作者最终选择的是混合精度模式。

optimization { execution_accelerators {
  gpu_execution_accelerator : [ 
    { name : "auto_mixed_precision" }
  ]
}}

tensorflow模型选择混合精度模式后,可以发挥显卡能力7及以上的混合处理单元(V100, T4及以上均可使用)。

显卡其实有2个发动机,普通的FP32处理单元(民用发动机),混合精度处理单元(赛车发动机)。

tensorflow模型转为tensorRT,等价于民用发动机上的极致优化,属于软件优化。

tensorflow模型采用混合精度模式,等价于运行在赛车发动机上,属于硬件加强。

实测混合精度模式要明显强于tensorRT(这边的测试大约是2倍)。

目前,无法让tensorRT和混合精度模型一起生效(这是最理想的优化),期望未来可以支持。

python代码部署

可以将python代码类似模型一样部署,本质也是input->handle->output

models
└── ibuddha_chitchat_bls
    ├── 1
    │   └── model.py
    └── config.pbtxt

这里讲解21.08开始才有的BLS功能(Business Logic Scripting)

常用的闲聊模型采用GPT模型,每次推理只能获取一个字,需要反复循环,且每次返回的向量非常多(网络传输时间消耗大),因此,将这部分逻辑放到triton的BLS中,在进程内完成,是非常合适的。

详看:

GitHub - triton-inference-server/python_backend: Triton backend that enables pre-process, post-processing and other logic to be implemented in Python.

name: "ibuddha_chitchat_bls"
backend: "python"
max_batch_size: 64
input [
  {
    name: "INPUT__0"
    data_type: TYPE_INT64
    dims: [ -1 ]
  }
]
input [
  {
    name: "INPUT__1"
    data_type: TYPE_INT64
    dims: [ -1 ]
  }
]
input [
  {
    name: "INPUT__2"
    data_type: TYPE_INT64
    dims: [ -1 ]
  }
]
output [
  {
    name: "OUTPUT__0"
    data_type: TYPE_INT32
    dims: [ -1 ]
  }
]
output [
  {
    name: "OUTPUT__1"
    data_type: TYPE_FP32
    dims: [ -1 ]
  }
]

instance_group [{ kind: KIND_CPU }]
dynamic_batching {
}

由于是python代码,因此涉及第三方库的问题,需要在原triton镜像的基础上新增三方库,因此,需要额外build镜像。

这里重点讲解一点:

python backend是配置的是:instance_group [{ kind: KIND_CPU }]

具体执行的模型,运行在GPU上。

因此

infer_response = infer_request.exec()

这句完成模型推理后的结果是在GPU上的,无法直接使用

必须采用pytorch的to_dlpack将GPU的内容放到共享内存中,再用from_dlpack把共享内存的内容转为pytorch的tensor。

logits = from_dlpack(output0.to_dlpack())

triton的变量转为pytorch的tensor有2种方法:

input_ids = from_dlpack(in_0.to_dlpack())

input_ids = torch.from_numpy(in_0.as_numpy())

采用to_dlpack和from_dlpack 具有更低的消耗。

这个是没有代码优化的model.py

import triton_python_backend_utils as pb_utils
from torch.utils.dlpack import from_dlpack,to_dlpack
import torch.nn.functional as F
import torch
import json
import numpy as np


class TritonPythonModel:
    """Your Python model must use the same class name. Every Python model
    that is created must have "TritonPythonModel" as the class name.
    """
    def initialize(self, args):
        """`initialize` is called only once when the model is being loaded.
        Implementing `initialize` function is optional. This function allows
        the model to intialize any state associated with this model.

        Parameters
        ----------
        args : dict
          Both keys and values are strings. The dictionary keys and values are:
          * model_config: A JSON string containing the model configuration
          * model_instance_kind: A string containing model instance kind
          * model_instance_device_id: A string containing model instance device ID
          * model_repository: Model repository path
          * model_version: Model version
          * model_name: Model name
        """

        # You must parse model_config. JSON string is not parsed here
        self.model_config = json.loads(args['model_config'])
        input0_config = pb_utils.get_input_config_by_name(
            self.model_config, "INPUT__0")
        input1_config = pb_utils.get_input_config_by_name(
            self.model_config, "INPUT__1")
        input2_config = pb_utils.get_input_config_by_name(
            self.model_config, "INPUT__2")
        output0_config = pb_utils.get_output_config_by_name(
            self.model_config, "OUTPUT__0")
        output1_config = pb_utils.get_output_config_by_name(
            self.model_config, "OUTPUT__1")

        # Convert Triton types to numpy types
        self.input0_dtype = pb_utils.triton_string_to_numpy(
            input0_config['data_type'])
        self.input1_dtype = pb_utils.triton_string_to_numpy(
            input1_config['data_type'])
        self.input2_dtype = pb_utils.triton_string_to_numpy(
            input2_config['data_type'])
        self.output0_dtype = pb_utils.triton_string_to_numpy(
            output0_config['data_type'])
        self.output1_dtype = pb_utils.triton_string_to_numpy(
            output1_config['data_type'])
        #self.cls, self.sep, self.pad, self.speaker1, self.speaker2 = self.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", "[PAD]", "[speaker1]", "[speaker2]"])
        #self.special_tokens_ids = [self.cls, self.sep, self.pad, self.speaker1, self.speaker2]
        self.special_tokens_ids = [0, 2, 1, 13086, 13087]
        self.output_min_length = 1
        self.output_max_length = 64 #TODO: change
        self.temperature = 0.7
        self.top_p = 0.7
        self.round = 1

    def execute(self, requests):
        """`execute` must be implemented in every Python model. `execute`
        function receives a list of pb_utils.InferenceRequest as the only
        argument. This function is called when an inference request is made
        for this model. Depending on the batching configuration (e.g. Dynamic
        Batching) used, `requests` may contain multiple requests. Every
        Python model, must create one pb_utils.InferenceResponse for every
        pb_utils.InferenceRequest in `requests`. If there is an error, you can
        set the error argument when creating a pb_utils.InferenceResponse

        Parameters
        ----------
        requests : list
          A list of pb_utils.InferenceRequest

        Returns
        -------
        list
          A list of pb_utils.InferenceResponse. The length of this list must
          be the same as `requests`
        """

        responses = []
        # Every Python backend must iterate over everyone of the requests
        # and create a pb_utils.InferenceResponse for each of them.
        for request in requests:
            # Get INPUT0
            in_0 = pb_utils.get_input_tensor_by_name(request, "INPUT__0")
            in_1 = pb_utils.get_input_tensor_by_name(request, "INPUT__1")
            in_2 = pb_utils.get_input_tensor_by_name(request, "INPUT__2")
            #pytorch_tensor = from_dlpack(in_0.to_dlpack())
            #print(pytorch_tensor)

            # Get Model Name
            #model_name = pb_utils.get_input_tensor_by_name(
            #    request, "MODEL_NAME")

            # Model Name string
            #model_name_string = model_name.as_numpy()[0]
            model_name_string = "ibuddha_chitchat"

            # Create inference request object

            # Perform synchronous blocking inference request

            # Create InferenceResponse. You can set an error here in case
            # there was a problem with handling this inference request.
            # Below is an example of how you can set errors in inference
            # response:
            #
            # pb_utils.InferenceResponse(
            #    output_tensors=..., TritonError("An error occured"))
            #
            # Because the infer_response of the models contains the final
            # outputs with correct output names, we can just pass the list
            # of outputs to the InferenceResponse object.
            #print(type(infer_response))
            output_ids = []
            output_confidences = []
            for i in range(self.output_max_length):
                infer_request = pb_utils.InferenceRequest(
                    model_name=model_name_string,
                    requested_output_names=["OUTPUT__0"],
                    inputs=[in_0, in_1, in_2])
                infer_response = infer_request.exec()
                if infer_response.has_error():
                    raise pb_utils.TritonModelException(
                        infer_response.error().message())
                output0 = pb_utils.get_output_tensor_by_name(infer_response, 'OUTPUT__0')
                #_logits = output0.as_numpy()
                #logits = torch.from_numpy(np.array(_logits))
                logits = from_dlpack(output0.to_dlpack())
                #print(pytorch_tensor)
                #_logits = self.triton_infer(encoded_input)[0]
                #logits = torch.from_numpy(np.array(_logits))
                logits = logits[0, :] / self.temperature
                top_logits = self.top_filtering(logits, self.top_p)
                probs = F.softmax(top_logits, dim=-1)
                prev = torch.multinomial(probs, num_samples=1)
                if i < self.output_min_length and prev.item() in self.special_tokens_ids:
                    while prev.item() in self.special_tokens_ids:
                        prev = torch.multinomial(probs, num_samples=1)
                output_id = prev.item()
                if output_id in self.special_tokens_ids:
                    break
                output_ids.append(output_id)
                output_confidences.append(probs[output_id].item())
                input_ids = torch.from_numpy(in_0.as_numpy())
                attention_mask = torch.from_numpy(in_1.as_numpy())
                token_type_ids = torch.from_numpy(in_2.as_numpy())
                #input_ids = from_dlpack(in_0.to_dlpack())
                #attention_mask = from_dlpack(in_1.to_dlpack())
                #token_type_ids = from_dlpack(in_2.to_dlpack())
                input_ids = torch.cat((input_ids, torch.LongTensor([[output_id]])), 1)
                attention_mask = torch.cat((attention_mask, torch.LongTensor([[1]])), 1)
                token_type_ids = torch.cat((token_type_ids, torch.LongTensor([[output_id]])), 1)
                in_0 = pb_utils.Tensor("INPUT__0", input_ids.numpy().astype(self.input0_dtype))
                in_1 = pb_utils.Tensor("INPUT__1", attention_mask.numpy().astype(self.input1_dtype))
                in_2 = pb_utils.Tensor("INPUT__2", token_type_ids.numpy().astype(self.input2_dtype))
                #in_0 = pb_utils.Tensor.from_dlpack("INPUT__0", to_dlpack(input_ids))
                #in_1 = pb_utils.Tensor.from_dlpack("INPUT__1", to_dlpack(attention_mask))
                #in_2 = pb_utils.Tensor.from_dlpack("INPUT__2", to_dlpack(token_type_ids))


            #print(infer_response.output_tensors())
            output_ids = torch.tensor(output_ids)
            output_confidences = torch.tensor(output_confidences)
            output_0 = pb_utils.Tensor("OUTPUT__0", output_ids.numpy().astype(self.output0_dtype))
            output_1 = pb_utils.Tensor("OUTPUT__1", output_confidences.numpy().astype(self.output1_dtype))
            #output_0 = pb_utils.Tensor.from_dlpack("OUTPUT__0", to_dlpack(output_ids))
            #output_1 = pb_utils.Tensor.from_dlpack("OUTPUT__1", to_dlpack(output_confidences))
            inference_response = pb_utils.InferenceResponse(
                output_tensors=[output_0, output_1])
            #print(type(inference_response))
            responses.append(inference_response)

        # You should return a list of pb_utils.InferenceResponse. Length
        # of this list must match the length of `requests` list.
        return responses
    def top_filtering(self, logits, top_p=0.0, threshold=-float('Inf'), filter_value=-float('Inf')):
        #assert logits.dim() == 1  # Only work for batch size 1 for now - could update but it would obfuscate a bit the code
        if top_p > 0.0:
            sorted_logits, sorted_indices = torch.sort(logits, descending=True)
            cumulative_probabilities = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
            sorted_indices_to_remove = cumulative_probabilities > top_p
            sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
            sorted_indices_to_remove[..., 0] = 0
            indices_to_remove = sorted_indices[sorted_indices_to_remove]
            logits[indices_to_remove] = filter_value
        indices_to_remove = logits < threshold
        logits[indices_to_remove] = filter_value
        return logits

    def finalize(self):
        """`finalize` is called only once when the model is being unloaded.
        Implementing `finalize` function is OPTIONAL. This function allows
        the model to perform any necessary clean ups before exit.
        """
        print('Cleaning up...')

可以参考python_backend里的examples。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值