【機器學習2021】8.3 Transformer Training

本文探讨了Transformer模型的训练方法,包括Teacher Forcing、Copy Mechanism和Beam Search。在解决训练中的Exposure bias问题时,介绍了scheduled sampling和reinforcement learning的应用,解释了强化学习通过奖励和惩罚机制来引导模型寻求最优解决方案的工作原理。
摘要由CSDN通过智能技术生成

【機器學習2021】Transformer (下)

8.1/8.2是train好的模型的运作方式,接下来关注如何进行training和testing

Teacher Forcing: use the GT as input

在这里插入图片描述

训练目标:minimize cross entropy(见4.)

Traning Tips (train seq2seq model)

1. Copy Mechanism

在这里插入图片描述

2. Guide Attention

客制化attention,通过对任务的理解,强制要求attention的顺序/位置等

3. Beam Search

不每次都greedy,比较总体更好的search方法在这里插入图片描述在答案比较确定的任务上比较有效果

T

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值