基于逆向Potts模型的流式网络入侵检测新方法

基于逆向Potts模型的流式网络入侵检测新方法

网络威胁行为检测目前的研究现状,有那些最新的研究成果。

网络攻击数量增长(列数据)——危害——必要性

  • NIDS:管理和识别网络中潜在威胁的工具

网络入侵检测系统

基于数据包的方法

执行深度包检查,同时考虑单个包的有效负载和报头信息

深层数据包检查成本高

基于流的方法

对流(即数据包集合)的属性进行分析,例如持续时间、数据包数量、字节数和源/目标端口[3]


[6]:基于浅层和深层学习的不同流分类器被提出,最好的基于流的分类器达到99%左右的准确率。虽然非常准确,但基于经典机器学习(ML)的分类器需要标记恶意流量样本来执行训练。真正标记流量比较困难

[8] [9] [10]:基于ML的分类器经过特定数据分布的训练后,在应用于分布稍有不同的其他数据时,通常不能很好地工作,它们的域适应能力较低

[11] [12]:众所周知的黑盒机制,难以理解和详细调整

  • 它仅基于良性示例生成可理解的模型(白盒),并适用于不同的领域。

基于能量的流类分类器(EFC),灵感来源于逆potts模型

  • 只要它能够学习良性流的属性,它就会区分良性流和恶意流
  • 白盒算法,生成了一个统计模型,可以对单个参数值进行详细分析

挑战
  • 难以获得足够的标记数据——基于良性流量样本(即一半信息)推断模型的能力。
  • 模型的不可解释性——白盒
  • 难以适应不同的领域

评价及数据集介绍

[16]、[17]、[18]:评估不同基于ML的分类器在互联网流量数据集上的性能,F1评价

16:基于深度学习的方法能够更好地区分恶意攻击和良性流量

17:在没有特征选择的情况下,表现出最佳性能的分类器是决策树;有特征选择的情况下,KNN

18:Random Forest(RF)的性能超过了所有其他分类器。

[19]、[20]、[21]:用在最近的网络入侵检测中,F1评价

[22]、[23]、[24]:使用相同数据集CIDDS-001

[22]:KNN和k-means聚类算法的性能。两种算法都达到99%以上的准确率

[23]:CIDDS-001进行慢速端口扫描检测。他们提出的方法能够以较低的误报率准确识别攻击

[24]:CIDDS-001上的流量进行了分类,并提出了一种考虑不平衡网络流量的稳健方法

[25]、[26]:CICIDS17

[25]:使用CICIDS17评估了基于Adaboost的分类器的性能

[26]:在2018年对不同的ML分类器进行了同样的处理

[27]、[28]、[29]:CICDDoS19

[27]:一种实时基于熵的NIDS,用于检测物联网(IoT)中的体积DDoS,并对CICDDoS19数据集和其他数据集进行测试。

[28]:使用卷积神经网络(CNN)在CICDDoS19数据集上获得了超过99%的准确度

[29]:一种基于模糊逻辑的入侵检测系统

问题

[6]:对基于流的网络入侵检测进行了全面的文献调查。提到了使用基于ML的分类器进行流量分类的一些缺点。

  • 训练分类器的计算成本高

  • 难以获得具有代表性的数据

  • 观察到的高假阳性率。

[7]:难以获得足够的标记数据

  • 大多数算法对可用于培训的标记样本数量的紧密依赖性,可能比较难获得大量数据。

  • 很难获取恶意流量样本并在现实世界中对其进行标记,很难训练入侵检测算法

可能检测零日攻击的唯一方法是依赖基于异常的分类器

[8] [9] [10]:难以适应不同的领域

  • 当在不同领域(数据分布)进行测试时,推断模型失去了预测性能

[11] [12]:一些模型的不可解释性

  • 不同的环境应需要透明的决策
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值