RuntimeError: derivative for floor_divide is not implemented

问题描述:pytorch训练网络的过程中,发现在loss.backward()时出现RuntimeError: derivative for floor_divide is not implemented的错误,最终发现在搭建网络过程中,除以一个常数的时候使用了“//”,是一个整数除法,使得网络训练过程中出现了整数,所以出现了上述错误。

解决方法:网络搭建过程中,使用“/”浮点数除法代替“//”整数除法时,错误解决。

`RuntimeError: register_forward_hook is not supported on ScriptModules` 是PyTorch中的一种常见错误,它发生在尝试对ScriptModule(即预编译模型)调用`register_forward_hook()`时。ScriptModule是由torch.jit.script()方法转换的,这种转换通常用于静态图模式,以提高性能,但在此过程中,一些动态特性如forward hook会被禁用。 原因在于,forward hooks是在运行时动态添加的观察器,它们允许你在模块的前向传递过程中获取内部变量的中间结果。然而,由于ScriptModule是预先计算并编译好的,这些动态操作在编译阶段就被忽略了。 解决这个问题的方法有几种: 1. **对于训练过程**:如果你需要在训练期间添加hooks,你应该保持模型在`nn.Module`的形式,而不是使用`script()`。这样可以继续使用`register_forward_hook()`。 ```python model = MyModelClass() # 使用非ScriptModule forward_hook = HookFunction() model.register_forward_hook(forward_hook) ``` 2. **对于推理过程**:如果仅在推理时需要钩子,可以考虑使用`torch.jit.trace()`代替`script()`,这会保留部分动态行为。但是需要注意的是,这种方法可能会增加推理时的内存消耗。 ```python traced_model = torch.jit.trace(model, example_input) traced_model.register_forward_hook(forward_hook) ``` 3. **使用替代方法**:如果需要在推理时监控输出,你可以考虑使用`torch.jit.export()`导出一个脚本文件,然后在Python环境中重新加载并使用自定义的追踪器来实现类似的功能,但这可能需要更复杂的设置。 请注意,具体做法取决于你的应用场景和需求。如果你在尝试迁移一个已经编译的模型到ScriptModule,确保理解其限制,并选择适合的方法来满足你的功能需求。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值