matplotlib
折线图:以折线的上升或下降来表示统计数量的增减变化的统计图 特点:能够显示数据的变化趋势,反映事物的变化情况。(变化) 直方图:由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据范围,纵轴表示分布情况。 特点:绘制连续性的数据,展示一组或者多组数据的分布状况(统计) 条形图:排列在工作表的列或行中的数据可以绘制到条形图中。 特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计) 散点图:用两组数据构成多个坐标点,考察坐标点的分布,判断两变量 之间是否存在某种关联或总结坐标点的分布模式。 特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)
散点图 plt.scatter(x,y)
条形图plt.bar(x,y) 横的条形图用barh() 一个图里面有多个条形则用多个bar() 变量x做便宜
直方图 把数据分为多少组进行统计 plt.hist(data,bins,normed) 参数是所有的数data和组距bins 组数=极差/组距 num_bins = (max-min)//d 一般来说使用hist是没有经过统计的数据
from matplotlib import pyplot as plt
设置图形大小:plt.figure(figsize=(20,8),dpi=80)
绘图 plt.plot(x,y) 所有坐标x的值和所有坐标y的值
调整x(y)轴的刻度 plt.xticks()
展示 plt.show()
保存 plt.savefig("file_path")
显示中文 font_manager : my_font = font_manager.FontProperties(fname="")
一个图中绘制多个图形:plt.plot() 调用多次
图例:plot(label="") plot.legend(loc.propr)
图形的样式: color lifestyle linewidth
添加图形描述 plt.xlabel() plt.ylabel()
网格 plt.grid(alpha=0.4, lifestyle=)
其他的python画图工具 Echarts 、 plotly for python、seaborn