数据科学库第二节

matplotlib

折线图:以折线的上升或下降来表示统计数量的增减变化的统计图 特点:能够显示数据的变化趋势,反映事物的变化情况。(变化) 直方图:由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据范围,纵轴表示分布情况。 特点:绘制连续性的数据,展示一组或者多组数据的分布状况(统计) 条形图:排列在工作表的列或行中的数据可以绘制到条形图中。 特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计) 散点图:用两组数据构成多个坐标点,考察坐标点的分布,判断两变量 之间是否存在某种关联或总结坐标点的分布模式。 特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)

散点图 plt.scatter(x,y)

条形图plt.bar(x,y)   横的条形图用barh()  一个图里面有多个条形则用多个bar() 变量x做便宜 

直方图  把数据分为多少组进行统计 plt.hist(data,bins,normed) 参数是所有的数data和组距bins    组数=极差/组距  num_bins = (max-min)//d   一般来说使用hist是没有经过统计的数据

from matplotlib import pyplot as plt

设置图形大小:plt.figure(figsize=(20,8),dpi=80)

绘图 plt.plot(x,y) 所有坐标x的值和所有坐标y的值

调整x(y)轴的刻度  plt.xticks()  

展示 plt.show()

保存 plt.savefig("file_path")

显示中文 font_manager : my_font = font_manager.FontProperties(fname="")

一个图中绘制多个图形:plt.plot() 调用多次

                                        图例:plot(label="")   plot.legend(loc.propr)

图形的样式: color  lifestyle  linewidth

添加图形描述 plt.xlabel()   plt.ylabel()

网格 plt.grid(alpha=0.4, lifestyle=)

 其他的python画图工具  Echarts 、 plotly for python、seaborn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值