池化层反向传播公式推导

本文探讨了池化层在深度学习中的作用,如减少计算量和提高多尺度信息,以及其潜在劣势。尽管有争议,池化层仍然被广泛应用。文章详细介绍了在反向传播过程中,均值池化和最大值池化的梯度计算方式,通过平均分配或复制最大值来传播误差。
摘要由CSDN通过智能技术生成

重点

  • 根据不同类型,上采用上层反向传入的梯度信息

池化层反向传播公式推导

池化层在深度学习网络架构中的作用包括:
* 减少计算量
减少特征图尺寸,减少后面的层的计算量

  • 提高多尺度信息
    如果存在多个池化层,就相当于网络中构造了一个多尺度特征金字塔,多尺度金字塔有利于提高检测/识别的稳定性

上述是池化层的优势,但是随着研究的深入,池化层的劣势也逐渐被发现,比如有实验发现”均值池化不利于网络的收敛”,至于网络稳定性的问题,也有文献怀疑resnet这之类加深网络结构的优化会降低网络对目标位置误差的鲁棒性,池化带来的优势被抵消了不少,感觉是一个鸡肋般的层.

不论如何,池化层目前还是被广泛使用的,本文主要说明池化层如何进行反向误差传播的.

BP算法的具体推导可以参考BP反向传播公式推导,其中推导了梯度信息从 k k 层传递到 k 1 层的公式如下:

δk1i=δk
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值