洛谷 P9355「SiR-1」Checkmate 题解

本文是关于一道思维性较强的编程题的解题思路分享。作者通过分析一排一排和一列一列放置物体的方式,得出两者皆为最优解,并给出了最大得分的计算公式以及对应的AC代码实现。
摘要由CSDN通过智能技术生成

注:本文为洛谷用户 zhangsenhao6728(也就是我)的题解,已提交成功。

解题思路

又是一道思维性较强的题目。

本题的关键点就是求出怎样放才能达到最好的效果。

现在让我来告诉你,一排一排的或一列一列的按顺序放是最优解。

我们先模拟一下 n = 4 , m = 5 n=4,m=5 n=4,m=5 的解题过程:

第一种,一排一排的放,每次放置的得分如下:

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 2 2 2 2 3 3 3

通过分析表格,我们得知:一排一排的放最大的得分为: ( n − 1 ) × ( m − 1 ) × 2 + ( n − 1 + m − 1 ) + 1 = 2 m n − n − m + 1 (n-1)\times(m-1)\times2+(n-1+m-1)+1=2mn-n-m+1 (n1)×(m1)×2+(n1+m1)+1=2mnnm+1

第二种,一列一列的放,每次放置的得分如下:

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2 2 2 2 2 2 3 3 3

通过分析表格,我们得知:一列一列的放最大的得分为: ( n − 1 ) × ( m − 1 ) × 2 + ( n − 1 + m − 1 ) + 1 = 2 m n − n − m + 1 (n-1)\times(m-1)\times2+(n-1+m-1)+1=2mn-n-m+1 (n1)×(m1)×2+(n1+m1)+1=2mnnm+1

然后,一细看,耶?这不是一样的吗?所以最终只要输出 2 m n − n − m + 1 2mn-n-m+1 2mnnm+1 即可。

AC 代码

#include<bits/stdc++.h>
using namespace std;
int main(){
	int t;
	cin>>t;
	while(t--){
		long long n,m;
		cin>>n>>m;
		long long ans=2*n*m-n-m;
		cout<<ans<<endl;
	}
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值