An Improved YOLOv8 Algorithm for Rail SurfaceDefect Detection:改进的YOLOv8钢轨表面缺陷检测算法

摘要:

针对铁路轨道表面缺陷检测中小目标和密集遮挡目标检测带来的问题,提出一种基于YOLOv8模型的铁路轨道缺陷检测算法。

1、使用SPD-Conv替换原始YOLOv8n中的卷积,来增强模型对中小目标的关注,同时保留原始网络的结构。

2、其次,我们将EMA注意力机制集成到neck中,使得模型能够利用不同层级的信息来提高特征表达能力。

3、最后,我们使用Focal-SIoU损失函数代替原始的CIoU函数,调整正负样本的权重,对难以分类的样本进行更加严厉的惩罚。

这一增强功能提高了模型准确识别具有挑战性的样本的能力,并确保网络对每个目标实例分配更多的注意力,从而提高模型的性能和有效性。实验结果表明,我们的增强算法在精确率、召回率和平均准确率方面都有了显著的提高。与原始的YOLOv8模型相比,我们改进的算法表现出卓越的精确率,召回率和平均准确率,分别达到93.9%,93.7%和94.1%。这些改进分别提高了3.6%,5.0%和5.7%。值得注意的是,这些改进是维持模型的维度和参数数量下完成的。在铁路轨道表面缺陷识别过程中,我们改进的算法在性能方面超过了其他广泛使用的算法。

关键词:钢轨缺陷检测,深度学习,YOLOv8,卷积模块,注意力机制,损失函数。

1、引言:

        由于铁路行业呈指数级增长,运营里程、速度和密度不断扩大。因此,和铁路相关的风险也在不断地上升[1]。这对铁路巡检的要求提出了更大的挑战。高速列车与钢轨表面之间的摩擦和滚动接触会导致磨损、变形,并且随着时间的推移,会产生波磨、裂纹、疤痕、断轨等缺陷[2]。波磨是指在铁路轨道表面观察到的周期性、正弦磨损或变形。裂纹的特征是钢轨表面出现线性或小裂缝。疤痕表示表面划痕或磨损痕迹。 钢轨断裂是指沿铁路线的一个或多个点发生的断裂。如果这些问题不及时发现和修复,可能会危及轨道交通安全,可能导致列车脱轨和严重事故。因此,及时发现并及时修复钢轨表面缺陷至关重要。显着降低事故风险,保障运输安全,延长钢轨使用寿命,降低维护成本。

        传统的钢轨缺陷检测方法包括人工检测[3]、磁粉检测[4]、红外热成像检测[5]。人工检测是一种简单并且 直接的方式,但它会受到检查员主观判断和疲劳的影响,导致结果不一致和不准确。而且,其效率低并且花费较高。磁粉检测可以使钢轨表面缺陷可视化,这有利于初步评估,但是其操作复杂,技术要求高,环境要求严格。与人工检查类似,也容易出现主观评价。 红外热成像检查是一种非接触式方法,可最大程度地减少对铁轨的干扰。然而,它主要关注与热相关的缺陷,检测其他类型缺陷(例如裂纹)的能力有限。此外,它很难提供有关缺陷大小和深度的精确信息。

       近年来,人工智能技术领域取得了令人瞩目的进步,其中机器视觉领域取得了显著突破。这一进展催生出了各种具有高精度和快速响应时间的神经网络模型[6]。这些模型的引入为轨道缺陷检测提供了一种新的解决方案,可以显着减少人力和物力资源投入,同时提高检测的准确性和效率[7]。被称为You Only Look Once (YOLO) [8] 的模型系列作为一种广泛使用的目标检测框架,已广泛应用于检测铁路轨道缺陷,产生了值得称赞的准确性和检测结果。另外,另一种流行的目标检测模型基于区域的卷积神经网络(Faster R-CNN)[9]利用候选区域提取和分类回归网络来精确定位和识别轨道上的缺陷。此外,多项研究将深度学习模型与图像分割技术相结合,实现了铁路轨道缺陷的精确分割和检测。值得注意的例子包括采用 U-Net [10] 和 Mask R-CNN [11] 等模型来定位和分割赛道上的缺陷区域。 总体而言,深度学习算法 [12] 在检测铁轨缺陷领域展现了巨大的前景并取得了显着的成果。

     在铁路安全领域,识别钢轨表面异常情况发挥着关键作用。近几十年来,机器视觉技术取得了显著的进步,见证了其在各国铁路轨道缺陷检测中的应用取得了重大的进展。在国际上,Sresakoolchai 和 Kaewunruen [13] 提出了一种新颖的方法,旨在通过利用轨道几何相关性(TGC)来获取轨道的精确几何表示来检测轨道缺陷。所提出的方法利用深度神经网络(DNN)[14]模型来有效地识别和分类缺陷。实验结果表明,该方法在检测钢轨截面异常和道钉磨损方面达到了 92.17% 的显着准确率。然而,随着缺陷类别数量的增加,模型的检测性能会下降。Mohan[15]等人,引入了一种增强的深度学习模型,叫做YOLOv2,它利用双折叠跳跃架构来识别和检测实时视频序列中的列车转向架组件。该模型的准确率达到69.0%,该模型检测性能的不佳可以归因于使用旧版本的YOLO,这阻碍了其检测能力。Casas[16]等人使用YOLOv8[17]模型来自动检测和计算林业中的堆积木材,使用CSPDarknet53骨干网络,mAP50达到83.9%。然而,它始终表现出低估静态图像中堆积的木材数量的趋势,导致误差范围从 -32.817% 到 -48.805%。在国内。cao[18]开发了一种基于深度学习的冷重轨表面缺陷视觉检测系统。该系统改进了Faster-RCNN目标检测模型的参数和结构,通过调整算法的逻辑,有效提升缺陷检测效率,保证重轨的生产质量。该系统对卷痕和卷痕测试数据的检测准确率和召回率均超过 90%。然而,由于系统所使用的数据集的有限性和不平衡性,该模型遇到了明显的过拟合现象,从而导致在实际测试场景中潜在的遗漏和识别错误。Bai[19]等人提出了一种基于改进的YOLOv4方法来检测铁路表面的缺陷。所提出的方法采用MobileNetv3作为底层框架,用于在YOLOv4框架中提取图像特征。此外,YOLOv4 中的 PANet 层采用了深度可分离卷积,与原始 YOLOv4 模型相比,准确率显着提高了 1.64%。Wang 等人[20]利用YOLOV5 框架引入了一种检测轨道扣件缺陷的创新方法。为了增强模型的能力,他们采用了通过几何中值过滤器剪枝(FPGM)算法进行模型剪枝,从而可以控制地增加模型的宽度和深度。结果,平均精度(mAP)从 91.23% 大幅提高到 93.42%。Hu 等人提出了一种增强型 YOLOX-Nano 钢轨扣件缺陷检测方法。 [21]通过在PAFPN输出产生的特征图之后立即应用自适应空间特征融合(ASFF),改进的YOLOX-Nano模型的mAP值增加了18.75%。Hu 等人提出了一种增强型 YOLOX-Nano 钢轨扣件缺陷检测方法。 [21]通过在PAFPN输出产生的特征图之后立即应用自适应空间特征融合(ASFF),改进的YOLOX-Nano模型的mAP值增加了18.75%。wang人。 [22]提出了一种改进的道路缺陷检测算法,该算法融合了 BiFPN 概念,并在框架内重建了 YOLOv8s 的颈部结构,与原始模型 mAP@0.5 相比平均精度提高了 3.3%。这些进步不仅提高了铁路检测的准确性而且有助于中国铁路安全管理体系的现代化。

        铁轨的表面缺陷检测提出了一些需要解决的挑战[23],首先,各种复杂的背景干扰的存在,包括铁锈、污垢和涂层,造成了相当大的困难,因为它们与真正的缺陷相似,从而加剧了检测过程。此外,铁路轨道表面缺陷所表现出的多种形状、尺寸和纹理涵盖了广泛的变化,包括波纹、磨损和断裂,从而阻碍了通用检测算法的开发。此外,实时或近实时铁路轨道缺陷检测的迫切需要需要实现具有高效率和快速响应能力的检测算法。最后,铁轨检测系统的实际实施容易受到一系列外部环境干扰的影响,例如照明条件的波动以及雨雪等恶劣天气条件的影响。这些因素会对图像质量造成干扰。从而影响缺陷识别的准确性。

       YOLOv8是Ultralytics公司精心打造的模型,代表了最先进的SOTA,基于先前迭代的成就,YOLOv8 引入了新颖的功能和增强功能,旨在增强性能和多功能性。YOLOv8植根于快速,精确和用户友好的原则,成为目标检测、图像分割和图像分类任务的多种应用的典范选择。为了应对铁轨表面缺陷检测的挑战,本研究提出了一种基于YOLOv8的改进算法。该算法具有以下新颖的创新:

(a)在YOLOv8n的主干网络中,原始步长为2的传统卷积层被空间深度深度卷积所代替,后面跟着一个非步长卷积层(SPD-Conv)[24]构建块,通过实施此修改,该模型对中小型目标的灵敏度显著提高。

(b)在下采样的每个阶段,每个C2f模块之后都嵌入了一个高效的多尺度注意力(EMA)[25]模块,该模块可以综合利用不同层级的特征信息,算法的特征表达能力显著增强。

(c)Focal-Segmentation Intersection[26] [27] 损失函数被代替原始的Compete-Intersection over Union (C-Iou)损失函数,这种替换调整了样本权重, 并增加了对分类困难的挑战样本的惩罚。因此,模型准确检测复杂样本的能力得到增强。通过细致的数据集标注和严格的验证过程,我们的算法实现了铁路轨道表面缺陷的精确定位和准确识别。 这些增强功能显着提高了算法的整体检测性能。

2、改善的算法设计

A.YOLOv8的算法原理

YOLOv8 算法由 Glenn Jocher 提出,建立在 YOLOv5 算法的基础上并增强了其特性。 此外,该算法还使用 You Only Look At Coefficients (YOLACT) [28] 架构开发了实例分割模型。 与YOLOv5类似,YOLOv8提供多种模型版本,涵盖多种尺寸,包括纳米、小型、中型、大型和超大型(n/s/m/l/x),具体取决于不同尺度的要求。 为了满足实时检查的需求,同时考虑模型的规模和参数数量,本研究采用YOLOv8n缺陷检测模型来识别铁路轨道表面的缺陷。 YOLOv8的主要改进包括:

(1)YOLOv8中初始卷积层使用的内核大小从6*6修改为3*3,同时消除了neck模块中的两个卷积连接层。如图1所示,网络中的所有C3模块都被C2f模块所代替,C2f模块引入了额外的分支来增强梯度流信息并丰富直流。

(2)Head部分已经从YOLOv5更改为流行的解耦头结构[29],该结构将分类和检测分开,并且从Anchor-Based更改为Anchor-free。

(3)对于损失计算,使用了 TaskAlignedAssigner 正样本分配策略 [31]。该策略可以描述为一种采用加权评分机制来选择正样本的匹配方法。这种方法结合了分类和回归分数来为样本分配合适的权重,采用分布焦点损失是因为回归分支需要与分布焦点损失[32]中提出的积分形式表示对齐,此外,还纳入CIoU损失函数。

(4)在训练期间的数据增强步骤中,引入了在YOLOX的最后10个epochs中禁用Mosiac增强[34]操作。从而提高了准确性,图2展示了YOLOv8的完整结构。

B.基于卷积模块SPD-CONV的改进方法

        为了增强从 YOLOv8n 模型中提取特征的能力,本文在主干网络中合并了 SPD-Conv 卷积模块。 在处理低分辨率图像和紧凑尺寸目标时,传统的 YOLOv8 模型可能面临某些限制,从而导致其检测性能下降。 由于铁路轨道表面缺陷往往涉及大量的小目标掉落缺陷,原始的YOLOv8模型在检测此类目标时效果不佳。 YOLOv8 模型中 SPD-Conv 卷积模块的结合带来了特征表示的显着改进,同时保留了模型的整体结构,从而减少了对高质量输入的依赖。

      SPD-Conv模块可以完全替代步进卷积和池化层。它包括一个空深度(SPD)层和一个非逐步卷积(Conv)。更具体地说,输入特征图最初使用 SPD 层进行变换,随后通过非逐步卷积层进行卷积运算。 这种组合有效地降低了空间维度而不牺牲信息,同时保留了通道信息。 因此,将 SPD-Conv 模块集成到 CNN 中可以显着提高检测性能,特别是当网络面临低分辨率图像和紧凑尺寸目标带来的挑战时。

     为了从大小为 S × S × C1 的中级特征表示获得子特征映射,采用以下序列切片过程:

我们定义一个子图f(x,y)由所有满足 i + x 和 j + y 为尺度整数除数的 X (i, j) 组成。 因此,下采样的规模被应用于每个子图。 示例结果如图 3(a)(b)(c) 所示,以演示设置比例 = 2 的效果。通过按比例因子 2 对 X 进行下采样,我们获得四个子图 f0,0、f1,0、f0,1、f1,1。 每个子图的形状为(S/2,S/2,C1)。

     接下来,通过跨通道维度连接这些子特征表示来创建成为X'的新特征表示。这个新的特征图是通过使用减小的比例因子缩小空间维度来处理的,而在通道维度中,它是比例平方因子来处理的,在图3(d)中,很明显,SPD操作将原始特征表示X(S,S,C1)转换为中级特征表示,表示为X′×S/scale,S/scale,scale2C1。

      在SPD特征转换层之后,我们加入了一个非跨度卷积层,特别是步长为1的卷积层,该卷积层配备了C2滤波器,其中C2<scale,继续从/scale、S/scale、scale2C1到X′′(S/scale、S/scale、C2)的转换和变换过程 如图1.3(e)所示。采用非跨度卷积,目标是保留与所有判别特性相关的大量信息。使用步幅为3的3*3滤波器会导致特征图中的每个像素被精确采样一次。这个过程在特征图上面产生了明显的 “收缩效果”,同样采用步长为2会引入不对称采样模式,其中偶数列和奇数列在数据提取过程中会受到不同的处理。需要强调的是,使用大于1的步幅时,模型往往会丢失判别性信息。

C.EMA注意力机制

    在铁路轨道表面缺陷检测中,传统的YOLOv8n模型简单的特征融合策略在处理大尺度和小尺度目标共存时面临挑战,这种策略往往会限制特征表示的深度,虽然注意力机制在增强特征表示方面的重要性得到了广泛的认可,但是传统的通道降维方法可能会损害深层视觉信息的完整性。EMA注意力机制避免了降维,通过重构一部分通道并在子特征之间均匀分配空间语义,实现了全面的信息保留和计算效率,它不仅对信息进行全局编码来调整通道权重,而且还通过夸维度交互捕获像素级关系,在本研究中,EMA模块被集成到YOLOv8n的颈部,以有效解决多尺度目标检测的挑战,这种集成显著提高了模型检测铁路轨道表面缺陷的性能。

coordinate attention 被视为SE注意力机制的替代方案,因为这两种注意力机制都旨在通过使用全局平均池化操作来合并跨通道,一般来说,使用全局平均池化的目的是通过将全局空间位置信息压缩为通道描述符来生成通道统计数据。频道关注图改善了功能的整合,图4(a)说明了CA注意力模块的框架,

        图 4(b) 提供了 EMA 注意力模块的综合结构。 虽然 CA 注意力模块通过将空间信息纳入通道建模而取得了良好的性能,但它忽略了完整空间位置之间的交互。 此外,1×1 卷积的感受野受限会削弱跨通道本地交互和利用上下文信息的能力。 相反,EMA 模块选择 CA 模块内 1 × 1 卷积的相互元素,并将它们称为 1 × 1 分支。 为了有效地整合跨多个尺度的空间结构信息,引入3×3内核,与1×1分支并行运行,有利于快速响应,被称为3×3分支。 通过采用并行子网络结构,EMA模块有效地保留了每个通道内精确的空间结构信息。 同时,它捕获通道间信息来调节各个通道的重要性。 此外,EMA采用跨空间维度的不同方向聚合空间信息的方法,有效增强了特征的聚合。 为了实现这一点,该过程包括引入两个张量:

    一个用于 1 × 1 维度分支的输出,另一个用于 3 × 3 维度分支的输出。 为了捕获 1 × 1 分支输出中的整体空间知识,采用了 2D 全局均值池操作。 在结合通道特征的协同激活机制之前,最小分支的输出经过直接重塑过程以符合适当的维度结构。 为了表示 2D 全局池化的操作,使用以下表示:

为了高效计算,2D 全局平均池化的导出使用 softmax 函数进行非线性变换。 为了确保效率和与现代架构的兼容性,从 EMA 模块获得的导出经过专门设计,以匹配 X 的大小。

D.FOCAL_SIOU 损失函数

        为了解决单阶段目标检测中正实例和非正实例不平衡的问题,采用焦点损失作为所选损失函数。 通过调整正样本和负样本的分配权重,焦点损失更加重视难以分类的样本。 通过选择焦点损失作为指定损失函数,模型识别复杂实例的能力得到增强。 SIoU 通过平滑 IoU 指标来增强检测小目标和部分遮挡目标的稳定性和准确性。 在铁路轨道表面缺陷检测中,各种类型的目标可能会相互重叠或遮挡,并且存在大量的小目标缺陷。 因此,Focal Loss和SIoU这两种改进技术同时应用于YOLOv8模型中。 通过使网络能够将更多的注意力分配给单个目标实例,模型的性能和有效性得到了增强。

      为了解决类别分布不平衡的挑战,焦点损失结合了一个调制因子,可以调整分配给每个样本的权重。 调制因子使用以下公式确定:

其中 γ 是 [5, 0] 范围内的参数,调制因子 (1 − pt )γ 减少了损失函数中对易于分类样本的重视。 焦点损失增强了分配给难以分类实例的权重,有利于它们对损失的贡献。 这有助于提高难以分类实例的准确性。 当 pt 较大时(表明更容易的样本分配得更好),配对损失变得更小。 通过实现正实例和非正实例之间的平衡,以及平衡实例的难度级别,可以获得Focal Loss的最终公式:

参数 αt 可用于解决正例和非正例数量之间的不成比例分布,从而提供一种减轻这种差异的方法。 另一方面,参数γ可以用来控制容易分类的实例数量和难以分类的样本数量之间的不平衡。 确定最佳权重比通常需要经验探索和微调。 通过对各种权重比进行系统实验并在验证集上评估模型性能或通过交叉验证,选择实现更有利平衡的权重比。

     像广义交并(GIoU)、距离交并(DIoU)、CIoU等损失函数没有考虑地面真实边界框和预测边界框之间的空间对齐,导致收敛速度较慢。 为了解决这个问题,SIoU 损失函数考虑了地面真实边界框和预测边界框之间的空间对齐形成的角度,引入了一种新的方法来重新定义相关损失函数。 重新定义的损失函数由以下部分组成:

(1) 角度成本表示连接物体质心和参考轴的线所形成的最小角度。 它的定义如下:

如图 5 所示,ch 表示的高度差是指在地面真实边界框和预测边界框的质心之间观察到的高度差异。 此外,σ 表示地面实况和预测边界框的质心之间的距离。 以下定义分配给相应的值:

(2)在本讨论中,坐标符号用于表示地面真实边界框 bgt cx 、 bgt cy 的中心位置,坐标 bcx 、 bcy 表示预测边界框的中心位置。 当α为π/2或0时,角度损失为0。 (2)距离成本是指边界框质心之间空间距离的度量,其惩罚成本与角度成本正相关。 它的定义如下:

其中 (cw, ch) 表示最小包围矩形的尺寸,包括真实边界框和预测边界框的宽度和高度。

(3)形状成本是通过计算两个盒子之间的宽度差异以及它们最大宽度(和长度)的相对比例来计算的。 这使得整体形状的收敛与长边和宽边的收敛保持一致。 以下定义概述了该概念:

通过测量预测边界框和地面真实边界框之间的宽度差异,它们的宽度和高度分别由坐标对 (w, h) 和 � wgt , hgt 表示。 参数 θ 控制形状损失的强调程度。 为了减轻对形状损失的过度重视并最小化预测边界框的位移,参数θ被限制在[2]和[6]的范围内。

(4) IoU损失定义如下[35],包括:

E.网络结构

     针对轨道表面缺陷检测中小目标频繁丢失的常见问题,本文提出了一种改进的网络架构。 图 6 所示的架构是专门为有效解决此问题而设计的。 由于标准YOLOv8模型在识别小目标方面的性能不理想,我们提出了SPD-Conv卷积模块。 通过增强模型提取相关特征的能力并减少对高质量输入数据的依赖,取得了显着的改进。 具体来说,在 YOLOv8 主干网络中,我们将步长为 2 的原始卷积层替换为使用 SPDConv 构建的块。 这种修改可以更有效地捕获中小型目标的细节。 此外,考虑到轨道表面缺陷检测中存在不同尺度的目标,我们在模型下采样阶段的每个 C2f 块之后引入了 EMA 注意块。 这确保了在各个检测级别上特征信息的有效利用,从而提高特征表示的准确性。 此外,Focal-SIoU 损失函数被用来替代 YOLOv8 中使用的 C-IOU 损失函数。 这一增强功能使模型能够通过调整正样本和负样本的权重并对难以区分的样本应用更高的惩罚来更好地识别具有挑战性的样本。 此外,它鼓励模型更多地关注单个目标实例,进一步提高检测的准确性。 本研究中提出的方法在不影响模型大小或参数数量的情况下提高了准确性。 这一特性使其特别适合铁路轨道表面缺陷检测的任务。

3 实验与结果

A 实验数据集

    在这项研究中,通过仔细选择和预处理轨道缺陷检测[36]以及来自开源的裁剪数据集[37],创建了一个用于铁路轨道表面缺陷检测的新数据集。 与跟踪缺陷检测和裁剪相关的数据集是从可公开访问的数据集存储库 Roboflow Universe 获取的。 与轨道缺陷检测相关的数据集由用户SUSTECH贡献,而与裁剪相关的数据集由用户FENG提交。 原始轨道缺陷检测数据集由 3041 张图像组成,其中 2924 张训练图像和 117 张验证图像。 裁剪数据集提供了 4110 张图像,其中 3963 张用于训练,294 张用于验证。 然而,由于这些开源数据集中存在重复图像和大量无缺陷铁轨图像等问题,因此进行了严格的筛选和细致的重新标记过程。 最终,总共选择了 3,812 张高质量图像来创建本研究专用的铁路轨道表面缺陷检测数据集。

    该数据集包含五个不同的检测类别,即裂缝、疤痕、断裂、光带和铁轨。 其中,如图7(a)所示,裂纹表现为钢轨表面出现的线状或细小裂纹。 裂纹的存在会引起周围钢轨表面的变形,例如由于裂纹形成和扩展引起的应力积累和变形而产生微小的隆起或凹陷。 如图7(b)所示,断裂对应于钢轨表面单点或多点出现的裂纹。 断裂钢轨的横截面可能表现出不同的特征,例如平坦、粗糙或明显破裂的轮廓。 如图7(c)所示,疤痕的特征是钢轨表面的刮擦或磨损痕迹,其形式可以多种多样,包括线性、点状或大面积区域。 如图 7 (d) 所示,光带表示相对明亮的区域,表现为沿轨道长度的带状区域,通常归因于轮轨接触产生的摩擦、磨损或发热。 尽管光带通常不会对铁路运输构成直接的安全威胁,但它们可以作为其他更严重缺陷的早期指标。 因此,及时检测和监测光带可以促进预防性维护并减轻进一步磨损,确保铁轨的最佳状态和列车平稳运行。 如图 7 (e) 所示,导轨通常是具有特定长度和形状的细长条带。 在这项研究中,除了检测四种缺陷类型,即裂纹、疤痕、断裂和光带之外,还进行了钢轨的检测和定位。 为了确保模型的全面训练和评估,数据集按 8:1:1 的比例划分为训练集、验证集和测试集。 有关数据集组成的更多详细信息,请参阅表 1。

B.实验设置

    本次调查中进行的实验利用了 PyTorch 框架和图形处理单元 (GPU)。 表 2 提供了实验条件配置的全面细分。

C.性能指数

     在评估目标检测算法时,主要评估标准可分为两大类:检测精度和模型复杂度。 为了评估检测的精度,广泛使用精度(P)、召回率(R)和平均精度(mAP)等指标。取TP代表真阳性样本量,FP代表假阳性样本量,FN代表假阴性样本量。 精度(P)、召回率(R)和平均精度(mAP)的数学表达式可以通过以下公式得到。算法的模型复杂度由模型的维度、参数数量和计算要求等因素决定。 这些因素的值越大表明模型复杂性越高。

D.实验结果与分析

1)训练曲线

      为了更直观地可视化改进算法所实现的增强,我们展示了训练曲线。 图8展示了原始模型和改进模型经过500轮训练后获得的mAP50、训练损失和验证损失曲线。 值得注意的是,原始模型的训练过程在 450 轮后结束,因为其准确性不再进一步提高。 相比之下,改进的模型表现出加速的收敛性,从而导致预测与地面真实值更加一致。 此外,mAP50 指标表现出显着的改进,如上述曲线清楚表明的那样。 这种观察到的增强可以令人信服地证明所提出的算法的有效性。

2)消融实验

   为了衡量通过将三种优化策略(即 SPD-Conv 模块、EMA 模块和 Focal-SIoU 损失函数)合并到 YOLOv8n 中所实现的性能提升,在本研究工作的数据集上进行了一系列消融实验。 使用模型大小、参数数量、精确率(P)、召回率(R)、平均精确率(mAP@0.5)和平均准确率(mAP@0.5:0.95)等评估指标。 消融实验涉及上述改进模块的不同组合。 表 3 显示了本研究中进行的实验获得的结果。 根据表3,可以看出,将SPD-Conv模块集成到原始YOLOv8n模型中后,P、R、mAP@0.5分别提高了1.3%、3.3%、2.9%和2.4%, 和 mAP@0.5:0.95 分别。 但引入CA机制后,P下降了0.4%,mAP@0.5:0.95下降了0.5%。 另一方面,R 表现出 0.2% 的增加,mAP@0.5 表现出 0.1% 的轻微改善。 此外,加入EMA注意力机制后,P、R、mAP@0.5、mAP@0.5:0.95分别提升了0.7%、2.8%、2.3%、2.5%。 基于上述发现,可以推断,与 CA 模块的集成相比,EMA 模块的结合产生了更好的结果。 具体来说,这种增强导致了各种评估指标的显着增强,P、R、mAP@0.5 和 mAP@0.5:0.95 分别提高了 1.1%、2.6%、2.2% 和 3.0%。 此外,使用Focal-SIoU损失函数后,P、R、mAP@0.5和mAP@0.5:0.95分别提高了3.4%、2.1%、2.7%和2.4%。 该表中显示的实验结果提供了本文提出的改进模型的证据,模型大小和参数略有增加。 P、R、mAP@0.5 和 mAP@0.5:0.95 分别提高了 5.6%、4.9%、5.2% 和 1.7%。 这作为本研究中提出的算法增强的有效性的证据。 提供本文提出的改进模型的证据,模型大小和参数略有增加。 P、R、mAP@0.5 和 mAP@0.5:0.95 分别提高了 5.6%、4.9%、5.2% 和 1.7%。 这作为本研究中提出的算法增强的有效性的证据。

3)对比实验

   为了证实本研究工作中提出的增强算法的优越性,在相同条件下进行了对比实验比较,涉及几种广泛使用的目标检测算法。 采用的评估指标包括模型大小、参数、精度 (P)、召回率 (R)、平均精度 (mAP@0.5) 和平均精度 (mAP@0.5:0.95)。 实验结果如表4所示,清楚地表明本研究工作中提出的算法在保持模型复杂性的同时提高了目标检测的准确性。 通过将增强算法的结果与原始 YOLOv8n 模型的结果进行比较,很明显,所提出的方法表现出显着的进步,mAP@0.5 显着提高了 5.7%。 所有评估指标的大幅增强进一步巩固了该算法相对于现有方法的优越性。

4)算法验证

        图 9 显示了使用从 YOLOv5n、YOLOv8n 和改进的 YOLOv8n 算法获得的可视化图像对铁路轨道表面缺陷检测结果的比较分析。 这些图像涵盖了各种照明条件,包括隧道内的照明条件。 通过 A 组和 D 组内的实验比较,很明显,优化后的 YOLOv8n 算法通过检测其他方法仍无法识别的目标,优于其他模型。 此外,B组和C组的实验对比证明了改进的YOLOv8n算法优越的检测精度。 结果表明,改进的模型在不同环境下取得了更好的检测结果,展示了其泛化能力和鲁棒性。 这些观察结果证实了该算法在有效解决与检测小型和密集遮挡目标相关的挑战方面的有效性,并为其性能提供了经验证据。

4 结论

本研究介绍了一种基于 YOLOv8n 的新颖检测算法,旨在有效解决检测铁轨表面缺陷的挑战。 该算法融合了多项关键增强功能,以增强其缺陷检测能力。 在此算法中,主干网络中步长为 2 的标准卷积层被 SPD-Conv 构建块替换。 这种替代的具体目的是增强中小尺寸目标的检测性能。 此外,为了进一步增强算法利用不同层特征信息的效率及其特征表达能力,在每个下采样阶段的每个C2f模块之后引入EMA注意力模块。 另外,YOLOv8原来的C-IOU损失函数被Focal-SIoU损失函数替代。 通过调整分配给代表正类和负类的样本的权重,对具有挑战性的样本施加的惩罚被放大。 从而提升了模型对复杂样本的识别精度,从而提高了算法的整体性能。 通过细致的数据集筛选、标记和验证程序,准确定位和检测铁轨表面的缺陷。 由于这些改进,算法的检测性能得到了显着增强。 改进后的算法获得的结果非常令人印象深刻,准确率、召回率和平均准确率分别达到 93.9%、93.7% 和 94.1%。 这些值比原始 YOLOv8n 模型显着提高了 3.6%、5.0% 和 5.7%。 值得强调的是,这些进步是在没有增加模型大小或参数的情况下实现的,强调了该算法在检测铁路表面缺陷方面的功效和实用性。 为了进一步验证算法的检测能力,在不同的检测环境下进行了仿真实验,以评估模型的泛化能力和鲁棒性。 对铁轨进行了检测,包括各种照明条件和隧道。 结果一致证明了改进算法的卓越检测性能,超越了该领域其他主流检测算法。 未来的工作将致力于完善网络架构,以提高检测精度和处理速度。 此外,正在计划调整该模型以在边缘计算平台上部署,因此需要移植和优化算法以减小其大小并促进无缝部署。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值