YOLOV8训练自己的数据集教程

YOLOV8是一种先进的目标检测算法,能够在图像和视频中快速准确地识别多个对象。随着计算机视觉和深度学习技术的不断发展,YOLOV8已成为许多领域中的重要工具,包括智能监控、自动驾驶、工业检测等。然而,由于不同应用场景的差异,通用的数据集往往无法满足特定需求,因此训练自己的数据集对于提高检测精度和适应特定场景至关重要。本教程将向各位介绍如何利用YOLOV8算法训练自己的数据集,以便更好地满足个性化的目标检测需求。


YOLOv8的基本原理介绍可以看我另一篇文章:YOLOv8原理详解,本文章包含了YOLOV8网络结构图的详解。

目录

环境配置

数据集准备

新建数据集yaml文件

训练


环境配置

在运行yolov8前需要配置相关环境,环境如下:

torch==1.10.0+cu102
torchvision==0.11.0+cu102

ultralytics==8.0.228

numpy==1.22.4


数据集准备

我这里的数据集是只有一个类,数据集名称叫target(根据自己的数据集自己命名),然后我把我的数据集放在了cfg/datasets文件下。目录形式如下:

其中Annotations存储的是xml形式的标签文件,images存储的所有的图像,labels存储的是将xml转为txt的标签文件(也是我们需要用的)。

$ tree
|-- Annotations
|-- images
|-- labels

然后我们需要将images和labels划分成训练集和验证集。如下图所示:

划分数据集脚本代码如下:

import os
import random
import shutil
from tqdm import tqdm


def split_datasets(datasets_path, data_dir, dataset_img_list, desc=''):
    '''
    :param datasets_path: 数据集根目录
    :param data_dir: train or val 根目录,eg:datasets/target/train/ or datasets/target/val/
    :param dataset_img_list:train or val images files list
    :param desc:tqdm of str train or val
    '''
    for img_file in tqdm(dataset_img_list, desc=desc):
        # 检查是否为图像
        if img_file.endswith('.jpg') or img_file.endswith('.png'):
            source_img = os.path.join(images_path, img_file)  # 源图像路径
            Dataset_path = os.path.join(data_dir, 'images', img_file)  # 目标训练集路径
            # 复制文件到训练到train_dataset
            shutil.copy(source_img, Dataset_path)
            # 操作对应label
            # 获取label name
            label_file_name = img_file.split('.')[0] + '.txt'
            source_label_path = os.path.join(datasets_path, 'labels')  # 获取label文件路径
            source_label_file_path = os.path.join(source_label_path, label_file_name) # 获取对应label.txt路径
            Label_path = os.path.join(data_dir, 'labels', label_file_name) # label目标文件路径
            # 复制Label文件到train_label
            shutil.copy(source_label_file_path, Label_path)


datasets_path = 'cfg/datasets/target'  # root path
images_path = os.path.join(datasets_path, 'images')
train_dir = os.path.join(datasets_path, 'train') # train_root
val_dir = os.path.join(datasets_path, 'val')  # val root
os.makedirs(train_dir, exist_ok=True)
os.makedirs(val_dir, exist_ok=True)
os.makedirs(train_dir + '/images', exist_ok=True)
os.makedirs(val_dir + '/images', exist_ok=True)
os.makedirs(train_dir + '/labels',exist_ok=True)
os.makedirs(val_dir + '/labels',exist_ok=True)
images_file_list = os.listdir(images_path)  # 获取所有的图像文件,xxx.jpg
random.shuffle(images_file_list)  # 打乱
# 划分train和val两个数据集
num_train = int(len(images_file_list) * 0.9)
train_img_files_list = images_file_list[:num_train]
val_img_files_list = images_file_list[num_train:]
# 划分train
split_datasets(datasets_path,train_dir,train_img_files_list,'train')
# 划分val
split_datasets(datasets_path, val_dir, val_img_files_list, 'val')





新建数据集yaml文件

我这里是在cfg/datasets/下新建了一个mydata.yaml文件,由于我这里只有一个类,而且类的name为"target",因此配置文件内容如下:(这里建议填写绝对路径,否则可能会出现问题)

path: F:/YOLOV8/cfg/datasets/target
train: F:/YOLOV8/cfg/datasets/target/train/images
val: F:/YOLOV8/cfg/datasets/target/val/images
test: #

# number of classes
nc: 1

# class names
names:
  0: target

训练

完成上述过程就可以开启我们的训练了,我这里同样也是写了一个脚本开启的训练(虽然官方有说可以在终端采用yolo命令开启训练,但我不喜欢这种方式),以yolov8s模型为例,训练代码如下:

这里也是建议在填写data的时候是绝对路径,

from ultralytics import YOLO
if __name__ == '__main__':
    model = YOLO("yolov8n.pt")
    res = model.train(model='yolov8n.yaml', data='F:/YOLOV8/cfg/datasets/mydata.yaml', epochs=5, batch=2,
                      device='cuda',
                      cache=True,
                      workers=4)

进行训练。。。。 

Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
        1/5     0.321G      1.159      2.346      1.435          7        640: 100%|██████████| 54/54 [00:20<00:00,  2.65it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:00<00:00,  6.44it/s]
                   all         12         24      0.764      0.542      0.744        0.5

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
        2/5     0.321G       1.35      2.419      1.619          4        640: 100%|██████████| 54/54 [00:17<00:00,  3.02it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:00<00:00, 11.94it/s]
                   all         12         24        0.7       0.75      0.818      0.431

和yolov5一样,训练完成后会将训练结果保存在runs/detect/train/下面,在runs/也会plot label或者batch等信息,这一点和v5没有区别。其中一个train_batch效果如下:

tensorboard也可以直接用tensorboard --logdir命令进行查看

  • 7
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃肉的鹏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值