关于张量(tensor)的理解

在深度学习中经常会碰到一个词,“张量”(tensor)。但对于一维,二维,三维还好理解,那么更多维度的时候呢?特别是当增加了批次(batch_size)这个维度,我们应该如何理解张量。

以pytorch为例,tensorflow也是一样的。

我们先来看这几个维度:

一维:

a = torch.tensor([1,2,3])

输出:tensor([1, 2, 3])

shape:torch.Size([3])

输出只有一个维度,所以是一维

二维:

 a = torch.tensor([[1,2,3]])

输出:tensor([[1, 2, 3]])

shape:torch.Size([1, 3])

a = torch.tensor([[1,2,3],[4,5,6],[7,8,9]])

tensor([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])

shape:torch.Size([3, 3])

以上输出有行和列,所以上二维张量,就是一个二维矩阵。

在来看一个矩阵:

torch.ones(1,3,3)

tensor([[[1., 1., 1.],
         [1., 1., 1.],
         [1., 1., 1.]]])

 我们注意到这个张量是有三个维度的,前面多了一个维度1。但貌似没看出这个1体现在哪里,我们再来看一个张量,进一步看一下这个最前面的维度体现在哪里:

torch.ones(3,3,3)

tensor([[[1., 1., 1.],
         [1., 1., 1.],
         [1., 1., 1.]],

        [[1., 1., 1.],
         [1., 1., 1.],
         [1., 1., 1.]],

        [[1., 1., 1.],
         [1., 1., 1.],
         [1., 1., 1.]]])

这回能看出来这个最前面的维度体现在哪里了么?相当于第一个3,是分了3大行每一大行,又分了三行小行,每行又分了三列,所以是3*3*3,最后一个维度永远是列的维度。 

如果你将上面的张量类比成图像,就相当于上面是3通道,每个通道的大小又是三行三列。。。

然后我们在看一个张量:

torch.ones(2,3,3,3)

tensor([[[[1., 1., 1.],
          [1., 1., 1.],
          [1., 1., 1.]],

         [[1., 1., 1.],
          [1., 1., 1.],
          [1., 1., 1.]],

         [[1., 1., 1.],
          [1., 1., 1.],
          [1., 1., 1.]]],



        [[[1., 1., 1.],
          [1., 1., 1.],
          [1., 1., 1.]],

         [[1., 1., 1.],
          [1., 1., 1.],
          [1., 1., 1.]],

         [[1., 1., 1.],
          [1., 1., 1.],
          [1., 1., 1.]]]])

上面的输出我专门用一个水平线分开了,这样更明显,上面一部分是一个维度,下面又是一个维度,所以是两个维度,再说的大白话点,就是整个张量,两大行,每大行又分了三行,每行又分了三行,然后又分了三列。

这个最前面的维度2,其实就是batchsize,就相当于这个张量是输入了两张图像,每个图像的大小是3通道,大小3*3。这样就应该比较好理解了。

再附一张图来说明一下:

 希望能够说明白~~让大家更好的理解张量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃肉的鹏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值