机器学习--K近邻算法(kNN)1

主要参考《机器学习实战》

kNN

存在一个样本数据集合(训练集),且训练集中每个数据都存在标签。输入无标签的新数据后,将新数据的每个特征与训练集样本对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。
一般而言,只选择样本数据集中前k个最相似的数据,通常k<=20。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

kNN实现一般流程

(1)收集数据;
(2)准备数据:距离计算所需要的数值,最好是结构化的数据格式;
(3)分析数据;
(4)训练数据:不适用于kNN
(5)测试数据:计算错误率;
(6)使用算法:首先输入样本数据和结构化的输出结果,然后运行kNN判断分类结果,最后应用对计算出的分类执行后续的处理。

代码


# -*- coding: utf-8 -*-
from numpy import *
import operator
import matplotlib
import matplotlib.pyplot as plt
import time



def CreateDataset():
    group = array([[1.0, 1.1],
                   [1.0, 1.0],
                   [0.0, 0.0],
                   [0.0, 0.1]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels

"""
对未知属性的数据集中的每个点依次执行以下操作:
(1)计算已知类别数据集中的点与当前点之间的距离;
(2)按照距离递增次序排列;
(3)选取与当前点距离最小的k个点;
(4)确定前k个点所在类别出现的概率;
(5)返回前k个点出现概率最高的类别作为当前点的预测分类;
"""
def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]  # 样本量个数
    # numpy.tile(A, reps):通过重复 A 由 reps 给出的次数来构造一个数组。
    diffMat = tile(inX, (dataSetSize, 1)) - dataSet  # 计算与训练集的差值
    sqDiffMat = diffMat ** 2  # 计算距离
    sqDistances = sqDiffMat.sum(axis=1)  # 按列求和得最终距离
    distances = sqDistances**0.5  # 距离开方
    # numpy.argsort():返回将对数组进行排序的索引(对数组的索引值进行排序)
    # print("distances:", distances)
    sortedDisIndicies = distances.argsort()
    # print("sortedDisIndicies:", sortedDisIndicies)
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDisIndicies[i]]
        # Python 字典 get() 函数返回指定键的值。
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    # print("sortedClassCount:", sortedClassCount)
    return sortedClassCount[0][0]

def file2matrix(filename):
    with open(filename) as fr:
        arrayOLines = fr.readlines()
        numberOfLines = len(arrayOLines)
        returnMat = zeros((numberOfLines, 3))
        classLabelVector = []
        index = 0
        for line in arrayOLines:
            line = line.strip()
            listFromLine = line.split('\t')
            returnMat[index, :] = listFromLine[0:3]
            classLabelVector.append(int(listFromLine[-1]))
            index += 1
    return returnMat, classLabelVector

def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m, 1))
    normDataSet = normDataSet / tile(ranges, (m, 1))
    return normDataSet, ranges, minVals

def datingClassTest():
    hoRatio = 0.10
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m * hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], 
                                     datingLabels[numTestVecs : m], 5)
        print("the classifier came back with: %d, the real answer is: %d" \
              % (classifierResult, datingLabels[i]))
        # time.sleep(1)
        if (classifierResult != datingLabels[i]): errorCount += 1.0
    print("the total error rate is: %f" %(errorCount / float(numTestVecs)))


if __name__ == "__main__":
    # group, labels = CreateDataset()
    # pro = classify0([0, 0], group, labels, 3)
    # print(pro)
    # datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    # print("returnMat:")
    # print(returnMat)
    # print("classLabelVector:")
    # print(classLabelVector)
    # fig = plt.figure()
    # ax = fig.add_subplot(111)
    # ax.scatter(datingDataMat[:,0], datingDataMat[:, 1],
    #            15.0*array(datingLabels), 15.0*array(datingLabels))
    # ax.set_xlabel("飞行常客里程数")
    # ax.set_ylabel("玩视频游戏所耗时间占比")
    # plt.show()
    # normMat, ranges, minVals = autoNorm(datingDataMat)
    # print(normMat)
    datingClassTest()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值