各种卷积层的理解(深度可分离卷积、分组卷积、扩张卷积、反卷积)

最近看论文的时候看到了有关空洞卷积(Dilated Convolutions)的内容,看到了一篇比较不错的文章,我来做一下笔记:

原文:各种卷积层的理解(深度可分离卷积、分组卷积、扩张卷积、反卷积)_gwpscut的博客-CSDN博客_深度可分离卷积


目录


2D卷积

信号处理中,卷积被定义为:一个函数经过翻转和移动后与另一个函数的乘积的积分。

 在深度学习中,卷积中的过滤函数是不经过翻转的。故此,深度学习中的卷积本质上就是信号/图像处理中的互相关(cross-correlation)

首先通过下面一张动图,清晰看出什么是卷积

(3*3kernel,padding为1)

(3*3kernel,padding为0)

执行卷积的目的是从输入的样本里提取有用的特征。在图像处理中,执行卷积操作有诸多不同的过滤函数可供选择,每一种都有助于从输入图像中提取不同的方面或特征,如水平/垂直/对角边等。类似地,卷积神经网络通过卷积在训练期间使用自动学习权重的函数来提取特征。所有这些提取出来的特征,之后会被「组合」在一起做出决策。

CONV的优点:权重共享(weights sharing)和平移不变性(translation invariant),可以考虑像素空间的关系。

单通道卷积的操作如下:

 多通道卷积操作如下:

我们获取到的图像样本,大多数都是RGB三通道的,当然也有RGBD其他的图像格式。今天我们就RGB三通道来说,一个卷积层往往由多个通道组成,每个通道描述一个方面的特征。

生成一个输出通道,就需要将每一个卷积核应用到前一层的输出通道上,这是一个卷积核级别的操作过程。对所有的卷积核都重复这个过程以生成多通道,之后,这些通道组合在一起共同形成一个单输出通道。设输入层是一个 5 x 5 x 3 矩阵,它有 3 个通道。过滤器则是一个 3 x 3 x 3 矩阵。首先,过滤器中的每个卷积核都应用到输入层的 3 个通道,执行 3 次卷积后得到了尺寸为 3 x 3 的 3 个通道。如下图所示

之后,这三个通道可以合并(元素级别的加法)到一起,组成了一个大小为 3×3×1 的单通道。整个通道是输入层(5×5×3)使用了过滤器(3×3×3 矩阵)后得到的结果。

嗯,懒得写了................直接看原本吧!!!

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值