债券的即期收益率,到期收益率,远期收益率有什么区别?

作者:呵呵
链接:https://www.zhihu.com/question/20745395/answer/155838929
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

即期收益率的英文名称是Spot rate,到期收益率的英文名称是Yield to Maturity(简写YTM),远期收益率的英文名称是Forward rate。

在了解这个问题之前,我们先来了解一下平均收益率和零息债券的概念。

如果你是一个基金经理,管理着一支基金,规模是100万元,今年行情好,到年底的时候涨到了200万元;然而第二年行情很差,又跌回到100万元,请问这支基金在这两年内的平均收益率是多少?

收益率的计算公式:

收益率=(期末价格-期初价格)/期初价格

我们分开计算:


第一年的收益率=(200-100)/100=100%;

第一年的收益率是100%,盈利;



第二年的收益率=(100-200)/200=-50%;

第二年的收益率是-50%,亏损;



那么平均收益率该怎么算呢,一般人可能会把这两个收益率加起来除以二:

[100%+(-50%)]/2=25%;


也就是说平均收益率有25%,基友一看,那好,你基金经理把25%的收益率给我,我投了100万,你把25万给我。


你一看,期初管理了100万的基金规模,两年后还是100万的基金规模,并没有多出的25万给基友啊,那这平均收益率难道错了吗?


其实不是平均收益率错了,而是你选用计算平均收益率的方式错了。


计算平均数,有两种方式,一种是算数平均数,还有一种是几何平均数。
算数平均数就是我们上面求均值的方式,也是统计学中最基本、最常用的一种平均指标,是加权计算的,每个数据之间不具有相互影响关系,是独立存在的。



比如你是手机店的销售员,星期一你卖了10部手机,星期二你卖了8部手机,星期三你卖了9部手机,星期四你买了11部手机,星期五你卖了12部手机,那么这一周你平均每天卖的手机数是:


(10+8+9+11+12)/5=10;


你平均每天卖10部手机。



那么,什么是几何平均数呢?


几何平均数是指n个观察值连续乘积的n次方根,这么说好像不太好理解,我们接着举卖手机的例子:

比如你是手机店的销售员,上个星期平均每天卖了10部手机,这个星期你的经理给你布置了新的任务指标:星期一在上个星期的基础上要增加10%的量,星期二在星期一的基础上再增加12%的量,星期三在星期二的基础上再增加8%的量,星期四在星期三的基础上再增加11%的量,星期五在星期四的基础上再增加9%的量。


那么,我们分开来计算每天要卖几台手机:


星期一:=10X(1+10%)=11;

星期二:=11X(1+12%)=12.32;

星期三:=12.32X(1+8%)=13.31;

星期四:=13.31X(1+11%)=14.77;

星期五:=14.77X(1+9%)=16.1;


或者我们可以一步计算:
星期五:=10X1.1X1.12X1.08X1.11X1.09=16.1;



星期一到星期五的增长率就是:

(16.1-10)/10=61%;


既然是求平均率,那么每个时间段的增长率都是相等的,即:

(1+r)(1+r)(1+r)(1+r)(1+r)=(1+61%);

r=10%;


手机销售的日平均增长率是10%;

介绍完了算术平均数和几何平均数的概念,我们再来看这篇答案开篇的那个例子:


如果你是一个基金经理,管理着一支基金,规模是100万元,今年行情好,到年底的时候涨到了200万元;然而第二年行情很差,又跌回了100万元,请问这支基金在这两年内的平均收益率是多少?

我们还是分别算出第一年和第二年的期间收益率:


第一年的收益率=(200-100)/100=100%;

第一年的收益率是100%,盈利;



第二年的收益率=(100-200)/200=-50%;

第二年的收益率是-50%,亏损;



这里我们不能用算数平均数的方法计算,而应该用几何平均数的方法计算:

(1+r)(1+r)=(1+100%)(1-50%);
r=0;


几何平均数算出来的平均收益率是0%,也就是这两年没涨没跌,符合实际情况,100万元的基金规模在两年后还是100万元。


有些基金公司对外宣称的平均收益率,都是算数平均收益率,这是不符合行业规范的,因为在算数平均收益率的计算下,如果第一年行情火爆,基金收益翻了好几倍,即使后面几年连续亏损,计算出来的也依然是正的收益率,按照规定,应该算几何平均收益率。


一般情况下,几何平均数的值要小于算数平均数的值,只有当期间值相等时,几何平均数才等于算数平均数。

以上文章内容搬运自我在这篇题目下写的答案:

为什么在金融领域,用几何平均来代替算术平均更为严谨?这两个平均数有什么本质上的不同吗?

以上就是算数平均数和几何平均数的介绍,下面我们再来介绍一下零息债券。

所谓零息债券,指的是以贴现方式发行,不附息票,而于到期日按时按面值一次性支付本利的债券。

那么零息利率,自然指的就是从当前时点开始至未来某一时点的利率,零息利率也称即期利率

比如政府发行了一支债券,面值是100元,发行购买价是97.09元,期间不付息,一年期满后一次性给你付100元,那么这支债券的零息利率是多少呢?

97.09X(1+r)=100;

r=3%;

这个利率是这一年的持有期收益率,同时也是即期利率

 

如果政府发行的是一支两年期的债券,面值是100元,发行购买价是92.46元,期间不付息,两年期满后一次性给你付100元,那么这支债券的即期利率是多少呢?

92.46X(1+r)(1+r)=100;

r=4%;

这个利率其实是个几何平均收益率,同时也是两年期的即期利率。

 

下面,我们引出远期利率的概念:

所谓远期利率,即从未来某一时点到另一时点的利率。

之前讲算数平均数和几何平均数的概念时,我们举过基金收益率的例子,第一年的收益率是100%,第二年的收益率是-50%,其实你可以这样理解:

第二年的远期收益率,是站在现在时点看,第一年末尾的下一年的收益率。

比如我现在零时点,下一年的收益率是100%,但是下一年末尾的下一年的收益率是-50%,这个-50%的收益率就是远期收益率,标记为:

f(1,1)

那么,站在零时点,下一年的收益率是100%,这个收益率既是一年期的即期收益率,也是站在零时点下一年的远期收益率。

那么,两年期的即期收益率怎么求呢?我们设一年期的即期收益率为r,两年期的即期收益率为R,远期利率为f(1,1):

(1+R)(1+R)=(1+r)[1+f(1,1)];

(1+R)(1+R)=(1+100%)(1-50%)

R=0;

我们算出,两年期的即期收益率是0,如果你提早知道这支基金是0的收益率,那你肯定不会去买,这个例子只是为了方便大家理解,而不具有实际意义,因为股票型基金的收益率是不确定的,所以才会出现今年翻倍、明年亏损一半的情况。

我们计算即期利率和远期利率,都是针对固定收益产品计算的,通常来说,指的就是债券类的产品。

我们再回到前文政府发债的那个例子:

比如政府发行了一支债券,面值是100元,发行购买价是97.09元,期间不付息,一年期满后一次性给你付100元,那么这支债券的零息率是多少呢?

97.09X(1+r)=100;
r=3%;

这个利率是这一年的持有期收益率,同时也是 即期利率


如果政府发行的是一支两年期的债券,面值是100元,发行购买价是92.46元,期间不付息,两年期满后一次性给你100元,那么这支债券的两年期 即期利率是多少呢?

92.46X(1+r)(1+r)=100;

r=4%;

这个利率其实是个 几何平均收益率,同时也是两年期的即期利率。

现在,我们可以计算这支债券的远期利率f(1,1):

(1+4%)(1+4%)=(1+3%)[1+f(1,1)];

f(1,1)=5.01%;

也就是说,这支债券一年期的即期利率是3%,两年期的即期利率是4%;站在现在看,一年后的下一年的利率是5.01%,也就是远期利率f(1,1);两年期的即期利率是求出的几何平均收益率,通过一年期的即期利率和远期利率乘积后开方所得。

可以看出,如果两年期的即期利率大于一年期的即期利率,那么远期利率f(1,1)必然大于两年期的即期利率,因为两年期的即期利率是几何平均收益率,肯定会介于一年期的即期利率和远期利率f(1,1)之间。

以上就是对即期收益率和远期收益率的介绍,数学计算虽然较多,但是前后承接还是比较有条理的,如果大家看完没有理解,建议多看几遍,待完全吃透了再看下面的内容。

介绍完了即期收益率和远期收益率,我们再来看到期收益率

前面介绍了零息债券的利率,并不是只有零息债券才能用零息利率,实际上大多数债券都是付息债券,零息利率(即期利率)只是一种表示形式,就跟一标准大气压是760mm 汞柱 一样。

我们接下来看这个例子:

政府发行了一支面值1000元,年付息5%的债券,三年到期。假设一年期的即期利率是3%,两年期的即期利率是4%,三年期的即期利率是5%,那么现在的售价应该是多少?

面值1000元的债券,年付息5%,那么每年的息票收入:

=1000X5%=50;

由于是分三年付息,所以,如果要计算今天的价格,应该把三年收到的现金加总求和。

注意:最后一年还要加上1000元面值:

把每年的现金收入折回到零时点:

第一年:=50/1.03=48.54;

第二年:=50/(1.04*1.04)=46.23;

第三年:=(50+1000)/(1.05*1.05*1.05)=907.03;

总和=48.54+46.23+907.03=1001.8;

或者我们可以一步计算:

50/1.03+50/(1.04*1.04)+(50+1000)/(1.05*1.05*1.05)=1001.8;

也就是说,这支债券现在应该卖1001.8元才合理,卖高卖低都有套利空间。

那么,如果我们现在就知道了该债券的出售价格,而不知道每年的即期利率,那我们能算出一个“标准化”的利率来代表该债券的收益率吗?

我们设这个“标准化”的利率就为“YTM”

50/(1+YTM)+50/[(1+YTM)(1+YTM)]+(50+1000)/[(1+YTM)(1+YTM)(1+YTM)]=1001.8;

计算YTM要用财务计算器,计算得出:

YTM=4.93%;

4.93%<5%;

这个YTM就是我们所说的到期收益率,相当于投资者按照当前市场价格购买并且一直持有到期满可以获得的年平均收益率,其中隐含了每期的投资收入现金流均可以按照到期收益率进行再投资。

随着期限的增长,如果利率呈上升趋势,那么三年期的到期收益率小于三年期的即期利率,这是一个很重要的结论。

根据这个例子给出的即期利率,我们同样也可以算出远期利率:

(1+4%)(1+4%)=(1+3%)[f(1,1)];

f(1,1)=5.01%;

一年以后再下一年的利率是5.01%;

 

(1+5%)(1+5%)(1+5%)=(1+4%)(1+4%)[f(2,1)];

f(2,1)=7.03%;

两年以后再下一年的利率是7.03%;

同理我们也可以预测,如果给出四年期的即期利率,那么这个利率必然大于5%,那么远期利率f(3,1)也必然大于7.03%.

 

我们可以据此得出结论,随着期限的增长,如果利率呈上涨趋势,那么在同一时间点下:

远期利率>即期利率>到期收益率;

这是一个很重要的结论,我们在研究固定收益产品时,经常会用到这个结论。

 

以上就是我对即期收益率、到期收益率、远期利率的介绍,希望能为大家的理解提供一点帮助。

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值