优秀的提示词是使用AI的关键。本文将系统介绍提示词工程的核心原则和实战技巧,助你成为AI对话高手。
一、提示词工程基础概念
1. 什么是提示词工程
-
• 定义:设计和优化与AI模型的交互指令的技术
-
• 目的:获得更准确、更符合预期的输出
-
• 应用:对话、创作、编程、分析等各类场景
2. 提示词的构成要素
-
• 指令(Instruction):明确的任务描述
-
• 上下文(Context):背景信息和约束条件
-
• 示例(Examples):输入输出的参考样例
-
• 输出格式(Format):期望的返回形式
二、核心原则与技巧
1. 清晰性原则
反例:
帮我写个文章
正例:
请写一篇关于人工智能在医疗领域应用的文章
要求:
1. 篇幅2000字左右
2. 包含3-5个实际案例
3. 重点讨论伦理问题
4. 面向普通读者,避免专业术语
2. 结构化输入
反例:
分析下这个数据
正例:
请分析以下销售数据:
数据背景:2023年全年月度销售记录
分析维度:
1. 月度销售趋势
2. 产品类别占比
3. 区域分布情况
期望输出:
1. 关键发现
2. 可视化建议
3. 改进建议
3. 角色定义
反例:
检查这段代码有什么问题
正例:
你现在是一位资深的Python后端工程师,有10年以上工作经验, 特别擅长性能优化和安全性分析。
请从性能、安全性、可维护性三个维度, 详细检查以下Django代码: [代码内容]
4. 引导与约束
反例:
写一篇营销文案
正例:
请帮我写一篇新品发布的营销文案
目标受众:25-35岁的职场女性
产品定位:高端护肤品
文案要求:
1. 突出产品科技感
2. 情感共鸣为主
3. 长度在500字以内
4. 需包含2-3个带话题标签
禁止: 1. 夸大效果 2. 违规用语 3. 贬低竞品
三、场景化提示词模板
1. 内容创作类
博客写作:
角色:专业[领域]博主
任务:创作一篇[主题]的博客文章
要求:
1. 目标读者:[读者画像]
2. 文章结构:[结构要求]
3. 风格要求:[风格描述]
4. 字数限制:[具体字数]
5. SEO关键词:[关键词列表]
产品文案:
背景:[产品/服务介绍]
目标:[营销目标]
受众:[目标用户画像]
调性:[品牌调性]
亮点:[产品亮点列表]
限制:[注意事项]
输出: 1. 标题(3个备选) 2. 正文 3. 行动召唤语
2. 技术开发类
代码优化:
场景:[当前问题描述]
代码:[代码内容]
需求: 1. 性能优化 2. 代码重构 3. 安全加固
输出要求: 1. 优化后的代码 2. 修改说明 3. 性能对比 4. 注意事项
API文档:
项目:[项目名称]
接口:[接口名称]
要求: 1. 接口描述 2. 请求参数 3. 响应格式 4. 错误码 5. 调用示例
补充: 1. 注意事项 2. 最佳实践
3. 数据分析类
数据报告:
数据范围:[时间段]
数据类型:[数据描述]
分析维度: 1. [维度1] 2. [维度2] 3. [维度3]
输出格式: 1. 数据概览 2. 关键发现 3. 趋势分析 4. 建议措施
用户研究:
研究目的:[目的描述]
数据来源:[数据类型]
分析要点: 1. 用户行为模式 2. 关键痛点 3. 需求洞察
期望输出: 1. 定量分析 2. 定性分析 3. 改进建议
四、高级技巧
1. 链式思考
请按以下步骤分析这个商业问题:
第一步:列出所有相关因素
第二步:分析各因素之间的关系
第三步:评估不同方案的可行性
第四步:提出具体实施建议
每一步都请详细思考后再进行下一步。
2. 反向提示
请告诉我这个解决方案可能存在的问题:
1. 技术层面 2. 成本层面 3. 用户体验层面 4. 长期维护层面 为每个问题提供规避或解决方案。
3. 迭代优化
第一轮:生成初始方案
第二轮:基于[具体标准]优化
第三轮:考虑[特殊情况]调整
最后:整合优化后的完整方案
五、注意事项
-
- 避免常见错误
-
-
• 指令不明确
-
• 上下文不足
-
• 约束条件模糊
-
• 忽视输出格式
-
-
- 优化建议
-
-
• 多用示例说明
-
• 设置合理约束
-
• 分步骤指导
-
• 及时纠正调整
-
-
- 安全考虑
-
-
• 避免敏感信息
-
• 注意版权问题
-
• 控制输出范围
-
• 验证输出结果
-
六、进阶应用
-
- 提示词模板库
-
-
• 建立场景分类
-
• 收集优秀案例
-
• 持续优化改进
-
• 便于复用
-
-
- 效果评估
-
-
• 设置评估标准
-
• 收集用户反馈
-
• 数据分析支持
-
• 持续迭代优化
-
写在最后
提示词工程是一门需要不断实践和积累的技术。建议:
-
- 从基础场景开始练习
-
- 建立个人知识库
-
- 及时总结经验
-
- 保持学习和探索
话题互动:你有哪些好用的提示词模板?在使用过程中有什么心得体会?欢迎在评论区分享交流。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。